介绍
大型语言模型 (LLMs) 如GPT-4、BERT 和其他基于 transformer 的模型 已经革新了 AI 领域。这些模型在训练 和推理 过程中需要大量的计算资源。选择合适的GPU 用于 LLM 推理 可以极大影响性能、成本效益 和可扩展性。💡
🔍 本指南将帮助您选择最适合的 GPU,无论您是设置个人项目、研究环境 还是大规模生产部署。🎯
了解关键 GPU 规格 顶级 NVIDIA GPU🔍
在深入列表之前,我们先简要了解使 GPU 适合 LLM 推理的关键规格:
-
🖥️CUDA 核心:这些是 GPU 的主要处理单元。更多的 CUDA 核心 通常意味着更好的并行处理性能。
-
🧠Tensor 核心:专门为深度学习任务 设计的内核,如矩阵乘法,这对神经网络操作 至关重要。
-
💾 **VRAM (显存)**:这是 GPU 用于存储数据和模型 的内存。更多的 VRAM 可以更高效地处理更大的模型和数据集。
-
⏱️时钟频率:表示 GPU 的运行速度,以 MHz 为单位。更高的频率 通常意味着更好的性能。
-
🚀内存带宽:这是数据可以从或写入 VRAM 的速率,它显著影响LLM 推理等任务的性能。
-
⚡功耗:以瓦特 (W) 为单位,表示 GPU 在运行时消耗的功率。更高的功耗 可能导致冷却和能源成本增加。
-
💰价格:GPU 的成本是关键因素,特别是对于有预算限制 的企业或研究实验室。平衡性能需求与可负担性 至关重要。
-
用于 LLM 推理
以下表格根据性能和价格对 NVIDIA GPU 进行排名,考虑了它们在 LLM 推理中的适用性:
消费级和专业级 GPU
高端企业级 GPU
🔝 LLM 推理的顶级选择
🔷NVIDIA H200:
-
最佳用途:需要最大性能和内存带宽的企业级 AI 部署,用于大型 LLM 推理工作负载。
-
性能:无与伦比的 GPU 性能,拥有18,432 个 CUDA 核心、96 GB HBM3 内存 和惊人的4,000 GB/s 带宽。
🔷NVIDIA H100:
-
最佳用途:专注于大规模 LLM 推理的企业和研究实验室。
-
性能:拥有16,896 个 CUDA 核心 和80 GB HBM3,H100 在极端性能和功耗之间取得了平衡,非常适合 AI 驱动的工作负载。
🔷NVIDIA A100:
-
最佳用途:需要高性能 AI 推理和训练的组织,价格低于 H100。
-
性能:提供1,555 GB/s 的内存带宽和40 GB 或 80 GB HBM2e 的内存选项,非常适合要求高的 AI 模型。
🔷NVIDIA RTX 6000 Ada Gen:
-
最佳用途:专注于性能的专业 LLM 推理任务,无需 HBM3。
-
性能:提供48 GB GDDR6 内存、18,176 个 CUDA 核心,以及性能与价格的平衡,适合中小型企业或研究环境。
🔷NVIDIA L40:
-
最佳用途:中型企业的高性能 AI 推理。
-
性能:L40 以9,728 个 Tensor 核心 和48 GB GDDR6 内存 提供出色的性能,同时功耗低于 H100。
💸 预算友好的 LLM 推理选项
🔷NVIDIA RTX 4090:
-
最佳用途:高端消费级 AI 推理设置。
-
性能:配备24 GB GDDR6X 内存 和1,008 GB/s 内存带宽。尽管450 W 功耗 较高,但作为消费级 GPU,它提供了卓越的性能,非常适合高性能任务,且价格具有竞争力。
🔷NVIDIA RTX 6000 Ada Generation:
-
最佳用途:需要大内存容量和高吞吐量的专业 AI 工作负载。
-
性能:提供48 GB GDDR6 内存、大量 CUDA 和 Tensor 核心,以及1,152 GB/s 内存带宽。确保处理大规模数据传输和高效执行 LLM 推理任务。
🔷NVIDIA Titan RTX:
-
最佳用途:需要强大 Tensor 核心性能的 AI 开发者,用于专业级 AI 开发和推理。
-
性能:拥有24 GB GDDR6 内存 和672 GB/s 内存带宽,Titan RTX 为 LLM 推理和深度学习任务提供了可靠的性能,尽管它缺乏最新的架构进步。
🔷NVIDIA RTX 3080 & RTX 3090:
-
最佳用途:高性能游戏和 AI 开发,特别是需要强大性能且价格更亲民的开发者。
-
性能:这两款 GPU 都提供了出色的性价比,RTX 3090 拥有24 GB GDDR6X 内存,特别适合内存密集型 AI 任务。这些型号在从事 AI 和游戏的开发者中很受欢迎。
🔷NVIDIA T4:
-
最佳用途:基于云的推理工作负载或边缘计算,需要较低的功耗。
-
性能:T4 针对低功耗进行了优化(16 GB GDDR6 内存),同时仍为基于云或边缘的 AI 推理工作负载提供不错的性能,非常适合注重功耗的 AI 应用。
🎯 结论
选择合适的 GPU 用于LLM 推理 很大程度上取决于项目规模、模型复杂性 和预算限制。
-
对于企业级部署,GPU 如NVIDIA H200 和H100 提供了无与伦比的性能,拥有大量的 CUDA 和 Tensor 核心、高 VRAM 和超高的内存带宽,非常适合最大的模型 和最密集的 AI 工作负载。这些 GPU 价格昂贵,但为前沿 AI 应用和大规模 LLM 推理提供了必要的动力。
-
对于寻求高性能 且价格较低的组织,NVIDIA A100 和RTX 6000 Ada Generation 在性能和成本 之间取得了平衡,提供了出色的性能和大量的 VRAM 以及强大的 Tensor 核心性能,非常适合中型企业 和研究实验室,他们需要高效且强大的硬件。
-
如果成本 和能源效率 是关键考虑因素,GPU 如NVIDIA L40 和A40 提供了可靠的 Tensor 核心数量、高 VRAM 容量和高效的功耗。这些是中型组织 中高性能 AI 任务的绝佳选择。
-
对于小型团队 或个人开发者,消费级 GPU 如NVIDIA RTX 4090 或RTX 3090 是绝佳选择,提供了强大的性能,且价格仅为专业级 GPU 的一小部分。这些 GPU 提供了高 CUDA 和Tensor 核心数量 以及充足的 VRAM,非常适合本地 AI 开发环境 或小规模 LLM 推理任务。价格在2,500 范围内,为想要强大硬件但预算有限的 AI 从业者提供了很高的性价比。
-
对于基于云的推理 或边缘计算,NVIDIA T4 和P100 提供了进入专业级 LLM 推理 的实惠入口,功耗较低,非常适合轻量级推理工作负载 和小型 AI 应用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。