在追求人工智能的宏伟蓝图中,开发具备自主推理、环境适应与互动能力的智能系统一直占据着核心地位。
随着深度学习技术的突飞猛进,构建这类系统的策略也在不断进化,从早期的强化学习逐步过渡到当前的大规模语言模型(LLMs)。
在这样的大背景下,伯克利博士论文《在大规模语言模型时代构建自主系统》深入挖掘了打造可信赖自主智能体所需的核心技术。
论文首先聚焦于深度强化学习(RL)中的普适性问题。研究者们构建了一个系统化的框架,旨在评估和优化学习策略在多变环境间的迁移效力。基于此,论文中提出了**事后任务重标定(Hindsight Task Relabeling, HTR)**这一创新性方法,它使得元强化学习算法得以在稀疏奖励的环境中习得适应性策略,无需依赖于训练过程中的密集奖励信号。
随后,论文深入探讨了利用大规模语言模型(LLMs)构建可靠智能体所面临的新挑战。尽管LLMs展现出了空前的推理能力,但它们作为自主智能体的效能仍受限于其架构的基本局限——尤其是它们的无状态特性和有限的上下文窗口。为应对这些挑战,研究者们提出了MemGPT,一个受操作系统启发的框架,赋予LLMs管理自身记忆和状态的能力,引入了虚拟上下文管理和自我导向的记忆操作等新概念。MemGPT展示了,将LLMs视作一种新型的计算基础单元——类似于CPU在传统操作系统中的作用——我们能够构建出更可靠、更强大的自主智能体。
论文目录
总体而言,这些研究成果不仅回顾了代理AI系统的发展轨迹,还为打造更可靠、更强大的自主智能体提供了关键的技术构件。通过攻克普适性、适应性和记忆管理等核心难题,论文为设计下一代能够高效推理并与世界互动的AI系统奠定了坚实的基础。这项研究为自主系统的未来演进提供了深刻的见解和实用的技术方案。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。