多模态理解是指从视觉、听觉、语言等多个不同模态的数据中提取并融合信息,以实现对数据含义的深入理解和推断的能力。多模态理解借助深度学习与计算机视觉(CV)和自然语言处理(NLP),将视觉信息转为自然语言,应用于图像描述、视频描述及视觉问答,显著扩展AI应用并提升智能。
*图像描述是**将视觉信息转换为连贯自然语言文本**的过程,**提升图像检索效率**;视频描述则进一步处理连续帧时序与动态,生成连贯视频内容描述,**应用于视频摘要、检索及监控等领域**;视觉问答(VQA)**结合图像理解与自然语言解析**,**挑战计算机感知、理解与语言生成能力,推动AI发展**。***
一、图像描述
*什么是**图像描述(Image Captioning)?*图像描述任务要求模型能够准确识别图像中的物体、场景以及它们之间的关系,并用自然语言生成一段简洁、流畅且富有信息量的描述****。**
图像描述旨在让计算机能够根据给定的图像自动生成一段描述性文字,这类似于人类日常生活中的“看图说话”。但对计算机而言,这项任务极具挑战性,需要结合计算机视觉(Computer Vision, CV)与自然语言处理(Natural Language Processing, NLP)技术,实现图像与文本跨模态融合,让计算机自动生成描述性文字的高级应用。
受机器翻译领域中编码器-解码器(Encoder-Decoder)模型的启发,图像描述可以通过端到端的学习方法直接实现图像和描述句子之间的映射,将图像描述过程转化成为图像到描述的“翻译”过程。
这一过程通常使用卷积神经网络(CNN)来提取图像中的视觉特征,如颜色、纹理、形状等;然后利用循环神经网络(RNN)或其变体(如长短期记忆网络LSTM、门控循环单元GRU)或Transformer架构来捕捉这些特征之间的时序依赖关系,并生成对应的自然语言描述。
*在生成描述的过程中,还可能采用注意力机制来增强模型对图像关键区域的关注度,从而提高描述的准确性和相关性。注意力机制并非简单地将输入图像编码成一个固定的特征向量,而是通过引入上下文向量,对每个时间步的解码过程进行动态调整,以此增强图像区域与生成单词之间的相关性,从而捕捉并表达更多的图像语义细节。*
二、视频描述
什么*是视频**描述(Video Captioning)**?视频描述是指通过机器**自动生成视频内容的描述语句**的技术,**旨在将视频中的视觉和听觉信息转化为易于理解的自然语言文本,从而帮助用户快速了解视频内容。*
*为了实现视频描述,可以通过卷积神经网络(CNN)提取视频帧中的关键视觉特征,结合循环神经网络(RNN)及其变体捕捉时序信息,再融合音频特征和文本信息等多模态数据,最后利用序列到序列(Seq2Seq)模型和注意力机制将这些特征转化为自然、准确的语言描述。*
在视频描述任务中,还可以应用视频定位(Video Localization)技术来精准标记视频关键元素或事件的位置及时间点。借助目标检测与跟踪,实时定位物体、人物;时间标注则记录关键事件或场景变换的具体时刻,两者协同工作,实现对视频内容的深度解析。
三、视觉问答
什么是视觉问答*(Visual Question Answering,VQA)*?视觉问答系统接收一张图像和一个关于这张图像的自然语言问题作为输入**,经过系统处理后,输出一个准确的自然语言答案。**
为了实现视觉问答,需要通过预训练的卷积神经网络提取图像特征,利用自然语言处理技术转化问题为特征向量,进而采用联合嵌入、注意力机制或多模态融合等方法将图像与问题特征有效结合,并在特征融合的基础上,运用分类器或生成式模型生成与问题紧密相关的自然语言答案。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。