【pytorch学习实战】第一篇:线性回归

往期相关文章列表:


1. 理论

假设给定下列一组数据集:
D a t a = { ( x 1 , y 1 ) , . . . , ( x n , y n ) } Data = \{(x_1,y_1), ... , (x_n, y_n)\} Data={(x1,y1),...,(xn,yn)}
希望找到一个函数 f ( x ) f(x) f(x)满足 f ( x i ) = w x i + b f(x_i)=wx_i+b f(xi)=wxi+b,并且 f ( x i ) f(x_i) f(xi) y i y_i yi尽可能的接近,我们使用下列函数(损失函数,Loss Function)来衡量误差:
L o s s = ∑ i = 1 m ( f ( x i ) − y i ) 2 Loss = \sum_{i=1}^{m}(f(x_i) - y_i)^2 Loss=i=1m(f(xi)yi)2
因为误差有正数,也有负数,所以取平方,这就是注明的均方误差

2. 代码实例

下列示例的步骤:

  1. 数据生成:生成y=3x+10的数据,并携带一定的误差(torch.rand)
  2. 数据显示:使用matplotlib画出原始数据
  3. 自定义模型:使用nn.Linear(1,1)指定输入输出的维度。
  4. 损失函数和优化器的选择:MSE损失和SGD优化器。
  5. 开始训练:迭代num_epochs。
  6. 显示结果:显示最终的线性回归效果。

import torch
import matplotlib.pyplot as plt
 
 #------------------------制造数据y=3x+10+误差-----------------------------
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = 3*x + 10 + torch.rand(x.size())
 
 #------------------------显示原始数据----------------------------
plt.scatter(x.data.numpy(), y.data.numpy())
plt.show()

 #------------------------自定义模型----------------------------
class LinearRegression(torch.nn.Module):
    def __init__(self):
        super(LinearRegression, self).__init__()
        self.linear = torch.nn.Linear(1, 1) # 输入和输出的维度都是1
    def forward(self, x):
        out = self.linear(x)
        return out

  #------------------------选择GPU还是CPU----------------------------
if torch.cuda.is_available():
    model = LinearRegression().cuda()
else:
    model = LinearRegression()

  #------------------------损失函数、优化器的选择----------------------------
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)

  #------------------------开始训练----------------------------
num_epochs = 1000
for epoch in range(num_epochs):
    if torch.cuda.is_available():
        inputs = x.cuda()
        target = y.cuda()
    else:
        inputs = x
        target = y
 
    # 向前传播
    out = model(inputs)
    loss = criterion(out, target)
 
    # 向后传播
    optimizer.zero_grad() # 注意每次迭代都需要清零,不然梯度会累加到一起造成结果不收敛
    loss.backward()
    optimizer.step()
 
    if (epoch+1) %100 == 0:
        print('Epoch[{}/{}], loss:{:.6f}'.format(epoch+1, num_epochs, loss.item()))#打印数据

  #------------------------测试----------------------------
model.eval() #测试模式
if torch.cuda.is_available():
    predict = model(x.cuda())
    predict = predict.data.cpu().numpy()
else:
    predict = model(x)
    predict = predict.data.numpy()

plt.plot(x.numpy(), y.numpy(), 'ro', label='Original Data')
plt.plot(x.numpy(), predict, label='Fitting Line')
plt.show()

原始数据如下:
在这里插入图片描述
打印的Epoch和Loss如下:

Epoch[100/1000], loss:3.344052
Epoch[200/1000], loss:0.435524
Epoch[300/1000], loss:0.157943
Epoch[400/1000], loss:0.095231
Epoch[500/1000], loss:0.079358
Epoch[600/1000], loss:0.075307
Epoch[700/1000], loss:0.074272
Epoch[800/1000], loss:0.074008
Epoch[900/1000], loss:0.073940
Epoch[1000/1000], loss:0.073923

最终线性回归效果如下:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非晚非晚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值