改进的基于yolov8的低光照目标检测系统

本项目聚焦于低光照环境下的图像增强与目标检测技术,通过融合低光照图像增强算法(LIME)和YOLOv8目标检测模型,旨在提升在光线不足条件下的目标识别准确率。该系统能够处理静态图像和动态视频流,通过增强图像质量来确保关键目标(如车辆)的准确检测,这对于自动驾驶等领域具有重要的应用价值。

核心亮点:

  • 低光照图像增强:采用自校准照明(SCI)技术,有效提升低光照图像的清晰度和细节。
    在这里插入图片描述

  • YOLOv8目标检测:在图像增强的基础上,利用YOLOv8模型进行高效的目标检测,确保在低光照环境下的检测准确性。

  • 实时检测能力:支持实时视频流处理,能够在动态场景中快速响应并提供增强后的检测结果。

  • 多线程加速:通过多线程技术优化处理速度,显著提升系统性能。
    在这里插入图片描述

  1. 安装依赖项:
    pip install -r requirements.txt
    
    确保硬件支持多线程处理(如多核CPU)以实现最佳性能。

使用方法:

  • 单张图像处理
    python detect.py --input_image path_to_your_image
    
  • 实时视频流检测
    python detect.py --input_stream camera
    
  • 批量视频处理
    python detect.py --input_video path_to_video --output_video path_to_output
    
    脚本将自动执行图像增强和目标检测。
    在这里插入图片描述

在这里插入图片描述

技术细节:

  1. 低光照图像增强(LIME)
    • 采用SCI框架,通过优化光照分布提升图像质量,从而改善特征提取效果。
  2. YOLOv8目标检测
    • YOLOv8作为单阶段检测算法,直接在输入图像中预测目标的边界框和类别概率,具有高效性和准确性。
  3. 性能优化
    • 多线程并行处理显著提升处理速度。
    • 图像增强技术进一步提高了检测精度。

效果展示:

  • 图像对比
    • 未增强图像:在低光照条件下,目标检测可能遗漏关键目标。
    • 增强后图像:图像质量显著提升,目标检测性能得到明显改善。
  • 性能数据
    • 单线程处理时间:1475.28秒。
    • 四线程处理时间:1369.06秒。

通过本项目,用户能够在低光照环境下实现更高效、更准确的目标检测,为自动驾驶等应用场景提供了强有力的技术支持。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值