本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!
专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html
融合Retinex理论与Transformer的YOLOv8低光照目标检测增强方法【YOLOv8】
低光照环境下的目标检测是一项具有挑战性的任务。在复杂的光照条件下(如黑夜或极低光环境),图像质量通常会严重下降,导致传统的目标检测方法性能受限。Retinex模型被广泛用于增强低光照图像的质量,但该模型在端到端的深度学习中应用有限。本文将Retinex模型的概念结合Transformers提出一种改进的网络结构,即Retinexformer,以实现低照度下的YOLOv8检测性能提升。
文章结构
本文将从以下几个方面展开:
- Retinexformer的网络设计
- Retinexformer在YOLOv8中的集成
- 实验与结果分析
- 实