融合Retinex理论与Transformer的YOLOv8低光照目标检测增强方法【YOLOv8】

本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!

专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html

融合Retinex理论与Transformer的YOLOv8低光照目标检测增强方法【YOLOv8】

低光照环境下的目标检测是一项具有挑战性的任务。在复杂的光照条件下(如黑夜或极低光环境),图像质量通常会严重下降,导致传统的目标检测方法性能受限。Retinex模型被广泛用于增强低光照图像的质量,但该模型在端到端的深度学习中应用有限。本文将Retinex模型的概念结合Transformers提出一种改进的网络结构,即Retinexformer,以实现低照度下的YOLOv8检测性能提升。

文章结构

本文将从以下几个方面展开:

  1. Retinexformer的网络设计
  2. Retinexformer在YOLOv8中的集成
  3. 实验与结果分析
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员Gloria

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值