基于YOLOv11的图像分类之眼病分类项目

基于YOLOv11的眼病分类项目

项目概述

本项目应用了YOLOv11这一先进的物体检测与分类算法,对眼部图像进行分类,以检测与失明相关的疾病。数据集来源于的eye disease([点击查看数据集]。
在这里插入图片描述

关键特性
  1. 数据准备
    • 数据集按80:20的比例划分为训练集和验证集。
    • 通过限制每个类别的图像数量,确保类别平衡。

  2. 模型实现
    • YOLOv11被训练用于根据失明严重程度对图像进行分类。
    • 性能指标包括精确率(precision)、召回率(recall)和F1分数(F1-score)。

  3. 自动化与可扩展性
    • 脚本自动化数据组织,确保实验可重复性。
    • 包含工具以验证数据集的完整性和平衡性。
    在这里插入图片描述

数据集

数据集包含经过调整大小的眼部扫描图像,标注了不同类别的失明严重程度。数据经过预处理,去除冗余数据并保持类别间的平衡。
在这里插入图片描述

使用方法
  1. 克隆项目仓库。
  2. 安装所需依赖(requirements.txt)。
  3. 运行训练管道以在数据集上训练YOLOv11。
  4. 在验证数据上评估模型。
结果

YOLOv11模型取得了显著成果,展示了其在医学图像分类任务中的潜力。
在这里插入图片描述

YOLOv11的优势

YOLOv11在实时物体检测领域实现了重大飞跃,具有更快的处理速度、更少的参数和更高的准确度。其轻量级架构和增强的速度使其成为各种计算机视觉任务的强大工具。

如果您需要更多信息或具体细节,请随时补充!

### 使用YOLO算法实现眼科疾病图像识别的方法 #### 数据集准备 为了训练YOLO模型用于眼科疾病的识别,需要收集并标注大量高质量的眼科图像数据。这些图像应涵盖多种常见眼病类型及其不同的严重程度。对于每张图片,需精确标记病变区域的位置以及类别标签。 #### 模型架构调整 原始版本的YOLO主要用于通用物体检测任务,在应用于医学影像分析之前可能需要做适当修改来适应新领域的需求。这包括但不限于改变输入尺寸以匹配典型视网膜扫描分辨率;增加网络深度或宽度以便更好地捕捉细微结构特征;引入额外损失函数项鼓励更精准边界框预测等[^2]。 #### 训练过程优化 考虑到医疗数据获取难度较大且样本量有限的特点,在实际操作过程中往往采用迁移学习策略——即先基于大规模公开预训练权重初始化参数值,再针对具体应用场景微调最后一层分类器部分。此外还可以探索诸如混合精度训练、自定义采样机制等方式进一步提升性能表现。 #### 应用实例展示 假设已经完成上述准备工作,则可以通过如下Python脚本加载训练好的YOLOv8模型并对测试集中的一幅光学相干断层成像(OCT)切片执行推理: ```python import torch from ultralytics import YOLO model = YOLO('path/to/best.pt') # 加载最优权值文件路径下的模型 results = model.predict(source='test_images/01.jpg', save=True, imgsz=640) for result in results: boxes = result.boxes.cpu().numpy() for box in boxes: r = box.xyxy[0].astype(int) print(f'发现疑似病症位于坐标({r[0]}, {r[1]}), ({r[2]}, {r[3]})') ``` 此段代码会读取指定目录下名为`01.jpg` 的OCT 图像作为待测对象,并输出所有被检测到的目标位置信息至控制台同时保存带有标注框的结果图于默认输出文件夹内。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值