适用客群和用途这两个角度对 评分卡的类别进行定义。
适用客群适用客群即评分卡所适用的贷款群体。从适用客群的角度来定义, 常见的评分卡可以被划分为如下3种。
- 通用评分卡(Generic Score Card):基于全行业数据,利用数据分析或经验判断开发的评分卡,如Fair Isaac公司开发的FICO系列评分卡。征信机构的信用评分均属于通用评分卡。通用评分卡不区分具体场景,反映用户自身的信用质量,通常应用于市场营销、申请审批、账户管理、催收回收、欺诈验证等场景。
- 定制评分卡(Customized Score Card):又称信用局部评分卡,通常是由具体机构根据自身数据及场景需求定制的评分卡。由于目标明确且针对性强,在样本量充分的情况下,相比于通用评分卡具有更好的表现。如支付宝平台上的芝麻信用分,它根据用户在其生态体系中的行为表现来刻画用户的信用水平,从而给出用户的信用刻度,对用户在支付 宝平台上的借贷行为有极高的参考价值。
- 子评分卡(Children Score Card):由于各机构不只有一个产品, 且单一产品中可能呈现出不同的样本分布,通常会在定制评分卡后的细 分方向上建立子评分卡。如使用定制评分卡得分作为平台全部客户的审批准入分数,再在不同场景下设立单独的子评分卡对用户进行二次建模。
用途 用途即评分卡的使用目的。常见的评分卡有如下6种定义方式。
- 申请评分卡(Application Card):申请评分卡通常用于贷前客户的进件审批。在没有历史平台表现的客群中,外部征信数据及用户的资产质量数据通常是影响客户申请评分的主要因素。
- 行为评分卡(Behavior Card):行为评分卡用于贷中客户的升降额度管理,主要目的是预测客户的动态风险。由于客户在平台上已有历史数据,通常客户在该平台的历史表现对行为评分卡的影响最大。
- 催收评分卡(Collection Card):催收评分卡一般用于贷后管理, 主要使用催收记录作为数据进行建模。通过催收评分对用户制定不同的 贷后管理策略,从而实现催收人员的合理配置。
- 流失预警评分模型:预测平台现有存量客户在未来某时间节点后流失的概率。覆盖审批通过后未提款客群、还款成功后不再复贷客群等。
- 营销评分模型:目标客群收到平台营销后,申请贷款服务的概率。在主动授信过程中,通常将营销评分模型的高分群体和申请信用评分模型的高分群体进行交叉,对预估信用较好且有强烈激活倾向的客户执行营销动作。
- 欺诈评分模型:一种用来预测用户的借款目的不正当程度的评分模型。信用模型用于衡量用户的还款能力及还款意愿,而欺诈评分模型 用于衡量用户的借款目的是否正当。