利用深度图使用3d-3dICP估计位姿

// 来自高翔SLAM十四讲
#include<iostream>
#include<opencv2/core/core.hpp>
#include<opencv2/features2d/features2d.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/calib3d/calib3d.hpp>
#include<Eigen/Core>
#include<Eigen/Geometry>
#include<Eigen/SVD>

#include<chrono>

using namespace std;
using namespace cv;

void find_feature_matches (
const Mat& img_1, const Mat& img_2,
std::vector<KeyPoint>& keypoints_1,
std::vector<KeyPoint>& keypoints_2,
std::vector< DMatch >& matches );

// 像素坐标转相机归一化坐标
Point2d pixel2cam ( const Point2d& p, const Mat& K );

void pose_estimation_3d3d (
const vector<Point3f>& pts1,
const vector<Point3f>& pts2,
Mat& R, Mat& t
);

int main(){
// 读取图像

vector<KeyPoint>keypoints_1, keypoints_2;
vector<DMatch> matches;
find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl;

// 建立3D点
Mat K = (Mat_<double>(3,3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
vector<Point3f> pts1, pts2;

for(DMatch m:matches){
ushort d1 = depth1.ptr<unsigned short>(int ( keypoints_1[m.queryIdx].pt.y))[int(keypoints_1[m.queryIdx].pt.x)];
ushort d2 = depth2.ptr<unsigned short>(int(keypoints_2[m.trainIdx].pt.y))[int ( keypoints_2[m.trainIdx].pt.x)];
if( d1 ==0 || d2 == 0) continue;    // bad depth
Point2d p1 = pixel2cam( keypoints_1[m.queryIdx].pt, K);
Point2d p2 = pixel2cam( keypoints_2[m.trainIdx].pt, K);
float dd1 = float(d1)/5000.0;
float dd2 = float(d2)/5000.0;
pts1.push_back(Point3f(p1.x * dd1, p1.y * dd1, dd1));
pts2.push_back(Point3f(p2.x * dd2, p2.y * dd2, dd2));
}

cout<<"3d-3d pairs : "<<pts1.size() <<endl;
Mat R, t;
pose_estimation_3d3d(pts1, pts2, R, t);
cout<<"ICP via SVD results : "<<endl;
cout<<"R = "<<R<<endl;
cout<<"t = "<<t<<endl;
cout<<"R_inv = "<<R.t() <<endl;
cout<<"t_inv = "<<-R.t() * t <<endl;    // 这个是表示的什么

return 0;
}

// 找到匹配的特征点
void find_feature_matches ( const Mat& img_1, const Mat& img_2,
std::vector<KeyPoint>& keypoints_1,
std::vector<KeyPoint>& keypoints_2,
std::vector< DMatch >& matches )
{
// 初始化
Mat descriptors_1, descriptors_2;
Ptr<FeatureDetector>  detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
Ptr<DescriptorMatcher> matcher  = DescriptorMatcher::create("BruteForce-Hamming");  // 暴力匹配

// 第一步:检测 Oriented FAST 角点位置
detector->detect(img_1, keypoints_1);
detector->detect(img_2, keypoints_2);

// 第二步：计算角点的BRIEF描述子
descriptor->compute(img_1, keypoints_1, descriptors_1);
descriptor->compute(img_2, keypoints_2, descriptors_2);

// 第三步：匹配描述子
vector<DMatch> match;
matcher->match(descriptors_1, descriptors_2, match);

// 第四步：筛选匹配点
double min_dist = 10000, max_dist = 0;  // 表示最大距离和最小距离
for(int i=0; i<descriptors_1.rows; i++){
double dist = match[i].distance;
min_dist = min_dist<dist?min_dist:dist;
max_dist = max_dist>dist?max_dist:dist;
}
printf("Max dist : %f\n", max_dist);
printf("Min dist : %f\n", min_dist);
// 以两倍最小距离作为最小值
for(int i=0; i<descriptors_1.rows; i++){
if(match[i].distance <= max(2*min_dist, 30.0)){
matches.push_back(match[i]);
}
}
}

Point2d pixel2cam(const Point2d& p, const Mat& K){
return Point2d(
(p.x - K.at<double>(0,2)) / K.at<double>(0,0),
(p.y - K.at<double>(1,2)) / K.at<double>(1,1)
);
}

// 位姿估计
void pose_estimation_3d3d(
const vector<Point3f>& pts1,
const vector<Point3f>& pts2,
Mat& R, Mat& t
){
Point3f p1, p2; // 全部匹配的点的中间值
int N = pts1.size();
for(int i=0; i<N; i++){
p1 += pts1[i];
p2 += pts2[i];
}
// 相对于中间点的位置
p1 = Point3f(Vec3f(p1) / N);
p2 = Point3f(Vec3f(p2) / N);
vector<Point3f> q1(N), q2(N);
for( int i=0; i<N; i++){
q1[i] = pts1[i] - p1;
q2[i] = pts2[i] - p2;
}

// 计算 q1 * q2^T
Eigen::Matrix3d W = Eigen::Matrix3d::Zero();
for(int i=0; i<N; i++){
W += Eigen::Vector3d(q1[i].x, q1[i].y, q1[i].z) * Eigen::Vector3d ( q2[i].x, q2[i].y, q2[i].z ).transpose();
}
cout<<"W = \n"<<W <<endl;

// 对W进行SVD分解
Eigen::JacobiSVD<Eigen::Matrix3d>svd(W, Eigen::ComputeFullU | Eigen::ComputeFullV);
Eigen::Matrix3d U = svd.matrixU();
Eigen::Matrix3d V = svd.matrixV();

if(U.determinant() * V.determinant() < 0){
for(int x=0; x<3; x++){
U(x, 2) *= -1;
}
}
cout<<"U = \n"<<U<<endl;
cout<<"V = \n"<<V<<endl;

Eigen::Matrix3d R_ = U*(V.transpose());
Eigen::Vector3d t_ = Eigen::Vector3d(p1.x, p1.y, p1.z) - R_ * Eigen::Vector3d( p2.x, p2.y, p2.z );

// 转换为 cv::Mat
R = (Mat_<double>(3,3) <<
R_(0,0), R_(0,1), R_(0,2),
R_(1,0), R_(1,1), R_(1,2),
R_(2,0), R_(2,1), R_(2,2)
);
t = (Mat_<double>(3, 1) << t_(0,0), t_(0,1), t_(0,2));
}

// 3d到3d的估计是对空间点运动的估计，并没有出现相机模型
// 也就是说，仅考虑3D点之间的变换时，与相机并没有关系

06-20 2090

05-25 2235

09-12 2963

12-18 4733

04-04 3123

03-18 894

06-28 2219

03-28 2275

08-21 5945

03-26 6839

10-17 1万+

01-03 73

02-03 209

05-04 3185

04-12 145

12-01 1万+

07-13 3083

06-20

11-18 2万+

09-03 1509

在ceres中实现ICP优化（仅优化位姿）

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客