通过两张图片实现2D-2D对极几何位姿估计

需要安装opencv3并且编译了features模块

代码中的1.png

代码中的2.png

// 来自高翔SLAM十四讲
#include<iostream>
#include<opencv2/core/core.hpp>
#include<opencv2/features2d/features2d.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/calib3d/calib3d.hpp>

using namespace std;
using namespace cv;

/*
    2D-2D的特征匹配估计相机运动
*/


void find_feature_matches(
    const Mat& img_1,  const Mat& img_2,
    std::vector<KeyPoint>& keypoints_1,
    std::vector<KeyPoint>& keypoints_2,
    std::vector<DMatch>& matches);

void pose_estimation_2d2d(
    std::vector<KeyPoint> keypoints_1,
    std::vector<KeyPoint> keypoints_2,
    std::vector<DMatch> matches,
    Mat& R, Mat& t);

    // 像素坐标转相机归一化坐标
    Point2d pixel2cam(const Point2d& p, const Mat& K);

int main(){
    // 读取图像
    Mat img_1 = imread("1.png", CV_LOAD_IMAGE_COLOR);
    Mat img_2 = imread("2.png", CV_LOAD_IMAGE_COLOR);
    
    vector<KeyPoint> keypoints_1, keypoints_2;
    vector<DMatch> matches;
    find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
    cout<<"一共找到了"<<matches.size()<<"组匹配点"<<endl;

    // 估计两张图像之间的运动
    Mat R,t;
    pose_estimation_2d2d(keypoints_1, keypoints_2, matches, R, t);

    // 验证E=t^R*scale
    Mat t_x = (Mat_<double>(3,3) <<
                            0,          -t.at<double>(2,0),         t.at<double>(1,0),
                            t.at<double>(2,0),      0,                  -t.at<double>(0,0),
                            -t.at<double>(1,0),     t.at<double>(0,0),      0);
    // 这个t^R就是essential矩阵(本质矩阵),但是相差一个倍数
    cout<<"t^R = "<<endl<<t_x * R<<endl;

    // 验证对极约束
    Mat K = (Mat_<double>(3,3)<<520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
    for(DMatch m:matches){
        Point2d pt1 = pixel2cam(keypoints_1[m.queryIdx].pt, K);
        Mat y1 = (Mat_<double>(3,1)<<pt1.x, pt1.y, 1);
        Point2d pt2 = pixel2cam(keypoints_2[m.trainIdx].pt, K);
        Mat y2 = (Mat_<double>(3,1) << pt2.x, pt2.y, 1);
        Mat d = y2.t() * t_x * R * y1;
        // 验证对极约束,理论上这个d应该是近似为0的
        cout<<"epipolar constraint = "<<d<<endl;
    }
    return 0;
}

// 找到匹配的特征点
void find_feature_matches(const Mat& img_1, const Mat& img_2,
                                        std::vector<KeyPoint>& keypoints_1,
                                        std::vector<KeyPoint>& keypoints_2,
                                        std::vector<DMatch>& matches){
    // 初始化
    Mat descriptors_1, descriptors_2;
    Ptr<FeatureDetector>detector = ORB::create();
    Ptr<DescriptorExtractor>descriptor = ORB::create();
    Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");   // 暴力匹配

    // 第一步:检测Oriented FAST角点位置
    detector->detect(img_1, keypoints_1);
    detector->detect(img_2, keypoints_2);

    // 第二步: 根据角点位置计算BRIEF描述子
    descriptor->compute(img_1, keypoints_1, descriptors_1);
    descriptor->compute(img_2, keypoints_2, descriptors_2);

    // 第三步:对两幅图像中的BRIEF描述子进行匹配,使用汉明距离
    vector<DMatch> match;
    matcher->match(descriptors_1, descriptors_2, match);

    // 第四步:对匹配点对进行筛选
    double min_dist = 10000, max_dist = 0;

    // 找出所有匹配之间的最小距离和最大距离
    // 即是最相似和最不相似的两组点之间的距离
    for(int i=0; i<descriptors_1.rows; i++){
        double dist = match[i].distance;
        min_dist = min_dist<dist?min_dist:dist;
        max_dist = max_dist>dist?max_dist:dist;
    }
    printf("--Max dist : %f\n", max_dist);
    printf("--Min dist : %f \n", min_dist);

    // 当描述子之间的距离大于两倍的最小距离时,即认为匹配有误
    // 设置30为阈值
    for(int i=0; i<descriptors_1.rows; i++){
        if(match[i].distance <= max(2*min_dist, 30.0)){
            matches.push_back(match[i]);
        }
    }
}

Point2d pixel2cam(const Point2d& p, const Mat& K){
    return Point2d(
        (p.x - K.at<double>(0,2))/K.at<double>(0,0),
        (p.y - K.at<double>(1,2))/K.at<double>(1,1)
    );
}

void pose_estimation_2d2d(std::vector<KeyPoint>keypoints_1,
                                                std::vector<KeyPoint>keypoints_2,
                                                std::vector<DMatch>matches,
                                                Mat&R ,Mat& t){
    // 相机内参,TUM Feriburg2
    Mat K = (Mat_<double>(3,3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);

    // 把匹配点转化为vector<Point2f>的形式
    vector<Point2f>points1;
    vector<Point2f>points2;

    for(int i=0; i<(int)matches.size(); i++){
        points1.push_back(keypoints_1[matches[i].queryIdx].pt);
        points2.push_back(keypoints_2[matches[i].trainIdx].pt);
    }

    // 计算基础矩阵:使用的8点法,但是书上说8点法是用来计算本质矩阵的呀,这两个有什么关系吗
    // 答:对于计算来说没有什么区别,本质矩阵就是基础矩阵乘以一个相机内参
    // 多于8个点就用最小二乘去解
    Mat fundamental_matrix;
    fundamental_matrix = findFundamentalMat(points1, points2, CV_FM_8POINT);    // Eigen库计算会更快一些
    cout<<"fundamental_matrix is "<<endl<<fundamental_matrix<<endl;

    // 计算本质矩阵:是由对极约束定义的:对极约束是等式为零的约束
    Point2d principal_point(325.1, 249.7);  // 相机光心,TUM dataset标定值
    double focal_length = 521;      // 相机焦距,TUM dataset标定值
    Mat essential_matrix;
    essential_matrix = findEssentialMat(points1, points2, focal_length, principal_point);
    cout<<"essential_matrix is "<<endl<<essential_matrix<<endl;

    // 计算单应矩阵:通常描述处于共同平面上的一些点在两张图像之间的变换关系
    Mat homography_matrix;
    homography_matrix = findHomography(points1, points2, RANSAC, 3);
    cout<<"homography_matrix is "<<endl<<homography_matrix<<endl;

    // 从不本质矩阵中恢复旋转和平移信息
    // 这里的R,t组成的变换矩阵,满足的对极约束是:x2 = R * x1 + t,是第一个图到第二个图的坐标变换矩阵x2 = T21 * x1
    recoverPose(essential_matrix, points1, points2, R, t, focal_length, principal_point);
    cout<<"R is "<<endl<<R<<endl;
    cout<<"t is "<<endl<<t<<endl;
}

 

### 对极几何原理 对极几何(Epipolar Geometry)描述了同一场景中两幅图像2D-2D)间的几何关系,在图像匹配、三维重建等领域应用广泛[^1]。这一几何框架主要用于描述和理解两个摄像机视角(或同一摄像机在不同时间拍摄的两幅图像)之间的几何关系。 #### 基本组成元素 对极几何涉及几个关键元素: - **基线(Baseline)**:连接两个摄像机光心的直线。 - **对极点(Epipoles)**:一条视线上无限远点在同一平面上的交点,两张图片上。 - **对极线(Epipolar Lines)**:给定一幅图中的任意一点,另一幅图中该点对应的可能置必定落在特定的一条直线上,这条直线称为对极线。 - **本质矩阵(Essential Matrix)/基础矩阵(Fundamental Matrix)**:用于表示上述几何关系的矩阵形式,其中本质矩阵适用于已知内参的情况而基础矩阵则不依赖于具体内参数值。 这些元素共同定义了一个强大的约束条件——对极约束(Epipolar Constraint),它指出如果知道了一张照片上的某个特征点,则可以在另一张照片上通过其相应的对极线来缩小查找范围,从而简化配准过程并提高效率[^2]。 ### 应用场景 对极几何的应用非常广泛,尤其是在以下几个方面表现突出: - **立体视觉**:利用双目或多目的成像设备获取物体的不同角度视图,并基于此计算深度信息以构建3维模型; - **运动估计**:当单个摄像头移动时,通过对连续帧间的关系分析可以推断出相机自身的姿变化; - **结构化光照扫描**:借助投影仪投射图案配合多台相机构建高精度表面形状测量系统; - **增强现实**:为了实现虚拟对象与真实环境无缝融合,需要精确跟踪用户的视线方向以及周围空间布局,这同样离不开对极几何的支持。 ```python import numpy as np from skimage import feature, io def epipolar_line(F, point): """ 计算给定点对应的基础矩阵F下的对极线方程 参数: F (np.ndarray): 3x3 的基础矩阵 point (tuple or list): 图像坐标系下一个点的置(x,y) 返回: tuple: 形式为(a,b,c),代表ax + by + c=0 这样的标准线性方程式系数 """ p_homogeneous = np.array([point[0], point[1], 1]) line_coefficients = F @ p_homogeneous.T a, b, c = line_coefficients / line_coefficients[-1] return a, b, c # 示例使用方法 img_left_path = 'path_to_image/left.jpg' img_right_path = 'path_to_image/right.jpg' imageL = io.imread(img_left_path) imageR = io.imread(img_right_path) # 提取SIFT特征点作为匹配候选者... keypoints_L = feature.corner_harris(imageL) # 实际操作应采用更鲁棒的方法提取角点或其他显著特征 keypoints_R = feature.corner_harris(imageR) # 构造一些假设性的匹配对(实际应该来自特征检测算法的结果) matches = [(kpL_idx, kpR_idx) for kpL_idx in range(len(keypoints_L)) for kpR_idx in range(len(keypoints_R))] for match in matches[:5]: # 只处理前五个例子展示用途 l_point = keypoints_L[match[0]] r_point = keypoints_R[match[1]] epi_line_coeffs = epipolar_line(fundamental_matrix, l_point) print(f"Left image point {l_point} corresponds to the following " f"epipolar line on right image ax+by+c={epi_line_coeffs}") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值