Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection

目录

1.Introduction

2. Related work

3. Proposed method

3.1. Lane and anchor representation

3.2. Backbone  

3.4. Attention mechanism

3.5. Proposal prediction

3.7. Model training

3.8. Anchor fifiltering for speed effificiency

4. Experiments

4.2. CULane

4.3. LLAMAS

4.4. Effificiency trade-offs

4.5. Ablation study


1.Introduction

作者提出了一个实时、高性能的车道线检测算法,将其命名为LaneATT。

该方法基于anchor实现,且应用了注意力机制,轻量级版本的推理速度达到250FPS 全局信息可能对推断其位置至关重要,特别是在遮挡、缺失车道标记等情况下。因此,这项工作提出了一种新的基于锚定的注意机制来聚合全局信息

2. Related work

Segmentation-based methods.

Row-wise classifification methods.

前人不足:牺牲精度换取速度,还有的代码不公开

我们提出了一种比现有的最先进的方法更快、更准确的方法。此外还公布完整代码

3. Proposed method

LaneATT:单阶段的model

从上图中可以看出,该算法将backbone的输出结果进行池化操作,以提取每个anchor的特征;将提取到的特征与注意力模块产生的全局特征进行融合,以解决遮挡、光照等原因导致车道线检测不到的问题;融合后的特征

作为全连接层的输入,全连接层输出车道线的置信度和相关参数。

3.1. Lane and anchor representation

Lane的anchor表征方式与Line-CNN的方式一致。如上图所示,首先将特征图均分为一定大小的网格。然后,一条lane由起始点s和结束点e,以及方向a组成。也就是一条lane由起始点按照一定方向到结束点的所有2d坐标组成。

 

3.2. Backbone  

式子中,x_orig,y_orig是起始点的坐标,θ 、是线的角度方向。这个公式的意思也比较好理解,就是按照网格y坐标找出line上的对应x坐标,这样就可以

挑出固定长度的特征出来,长度为特征图F的高度。如果出现了y对应的x点坐标在特征图外,就采用0 padding的方式补齐。

3.4. Attention mechanism

然后,将这些权重与局部特征相乘后相加,以产生相同维数的全局特征向量:

3.5. Proposal prediction

3.7. Model training

x坐标的共同指标(s‘和e’之间)的选择方式与车道距离(方程(5))相似,但使用e‘=egt而不是e’=min(eprop,egt),其中eprop和egt分别是建议及其相关的地面真相的最终指标。如果使用建议的

eprop中预测的结束索引,训练可能会通过收敛到退化解而变得不稳定(例如,eprop可能收敛到零)。

3.8. Anchor fifiltering for speed effificiency

4. Experiments

在[20]中提出的方法是唯一能与我们的速度相媲美的方法。由于FDR和FNR的指标在他们的工作中没有被报告,所以我们使用已发布的代码来计算它们,并报告了这些指标。虽然他们达到了很高的准确性,但FDR明显地很

高。例如,我们最高的FDR是5.64%(ResNet-122),而最低的是18.91%,几乎是它的4倍。

4.2. CULane

 

与[20]相比,我们最轻量级的型号(ResNet-18)比它们最大的(ResNet-34)多出F1的3%,同时要快得多(在同一台机器上250vs175FPS)

4.3. LLAMAS

4.4. Effificiency trade-offs

锚的数量可以减少为一个轻微的提高的效率,而没有一个大的F1下降。然而,如果减少的幅度太大,F1就会开始大幅下降。此外,如果使用了太多的锚,效果也会降低,这可能是不必要的锚干扰训练的结果。输入大小的结果相似,尽管mac下降幅度更大。锚的数量和输入大小的最大影响是对训练时间。

4.5. Ablation study

第一行包含了标准LaneATT的结果,而下面的行显示了略微修改的版本的结果。

在第二行中,删除基于锚的pooling,使用选择Line-CNN[13]特征的相同过程(即每个锚只使用特征图中单个点的特征)。

在第三种方法中,不是使用一对全连接层(Lreg和Lcls)进行最终预测,而是使用了三对(六层),每个边界使用一对(左、下或右)。

第四个是用交叉熵代替焦点损失,最后一个是去除注意机制。

当删除基于锚点的池化过程时,性能的大量下降显示了它的重要性。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值