文章目录
前言
本文主要针对PNP问题在工程使用的时候,如何布置合作特征的位置进行了一定的研究,探讨了合作特征的位置和尺寸对位姿估计精度的影响。
主要因素:
(1)标志器与相机的相对距离:X和Y方向上的测量误差与相机和靶标的相对距离成正比例关系;Z轴的测量误差与相机和靶标的相对距离的平方成正比;
(2)标志器(合作目标)的尺寸:标志器尺寸越大,误差越小;
(3)相机焦距、象元尺寸和电路噪声:相机的焦距越长,相机的量化误差越小;相机的象元尺寸越小,相机的量化误差越小;
(4)相机内参数标定误差和镜头像差:X和Y方向上的误差与焦距的标定误差没有直接关系;Z方向上的测量误差与焦距的标定误差成正比例关系;
(5)特征点的中心提取精度:相机的量化误差和镜头畸变引起的特征点成像位置偏移已确定,可以对特征点的质心进行亚像素提取,通过提高质心提取精度来补偿相机的量化误差,提高测量精度;系统的测量精度与提取质心位置精度成正比例关系;
仿真结论:
(1)测量距离是影响测量精度的首要因素,且Z轴的测量误差呈现指数增长;
(2)X和Y方向上的测量误差与标志器的大小无关,Z方向上的误差与标志器尺寸成反比例关系,即大尺寸的特征点有助于提高特征点质心点提取精度,尤其是在测量距离较远时;
(3)相机内参数标定误差对X和Y方向上的误差为0;对Z方向上的误差和测量距离的比值与焦距的标定误差和焦距的比例相同,即焦距的标定误差为千分之一,带来的测量误差与测量距离的比例也为千分之一;
(4)特征点质心点提取精度是测量系统误差的最主要的来源
(5)位姿解算算法的误差在5m内为10(-8)量级
特征标志点规划布局设计:
(1)全场控制点:均匀分布在装配现场之中,一方面用于建立装配现场中的全局坐标系;另一方面用于确定各个测量坐标系与全局坐标系之间的转换关系;
(2)拼接标志点:用于实现各个测量坐标系之间关系的转换;根据部件外形特征变化设置拼接标志点
(3)位姿控制点:用于建立各个大部件的局部坐标系与CAD设计模型坐标系之间的转换关系
(4)点集内的布局参数:1.点的个数 2.基准点的坐标 3.同一坐标系下各标志点与基准点之间的坐标差值
标志点规划布局的约束条件:
(1)曲率特征加权质心点约束
曲率特征是3D测量空间自身所固有的属性,与外界因素无关,因此,曲率特征分布将直接决定着标志点规划布局的疏密程度。假设存在一组标志点集,其中每个标志点处的主曲率设为k1,k2,且该点处的高斯曲率和平均曲率分别设定为k_gas,k_avg,将各标志点处的曲率特征作为求解质心坐标的权重系数,加权质心点位置会明显靠近于曲率变化明显点区域。
基于刚体运动学原理,需要将标志点集视为刚体,而具有剧烈曲率变化的标志点所在位置对于坐标转换精度的影响更为显著,这就需要在曲率变化明显的区域布置相对较多的标志点,以保证坐标转换精度。
(2)坐标转换误差的平方和最小约束
根据最小二乘法基本原理可知,要获得最优解是基于所有计算的转换点,使得全部转换点的坐标转换误差的平方和最小。
(3)测试点的绝对误差指标最小约束
使用坐标值误差法、均方根法和相对欧式距离误差法对坐标转换精度进行评定。
当前的一些研究成功和结论:
基于立体视觉的运动刚体位姿测量方法研究
1.特征点的布局优化
提出了基于2-范数的姿态误差表示方法,根据测量模型,给出了特征点布局相关量与姿态误差的数学关系;
结论:两个姿态矩阵R,Q间的差距的大小可以用它们差R-Q的2-范数(奇异值的最大值)表示,且R-Q且有一个为0的奇异值,另外两个奇异值相等;
2.优化布局方案
不同布局方式下的特征点,他们形成的向量矩阵Vm的广义逆的2-范数越小,系统测量误差对所求解姿态的影响也越小;
一种单目视觉位姿测量系统的误差分析方法
相邻特征点在图像平面所成像点的间距主要受测量距离和特征点实际间距的影响。测量距离越大,像素点之间代表的实际距离就越大,测量误差就越大。
位姿测量误差的本质是回归到像素点代表的实际距离的大小,近距离的时候图像提取误差大一点也不会影响太多,因为像素间代表的实际距离很小,一旦距离变远,意味着单个像素点代表的距离就增大了,所以提取误差就显得尤为重要。
基于点特征的位姿测量系统鲁棒性分析
证明了由图像坐标检测误差引起的位姿误差随摄像机焦比的增大而减小。 位姿求解误差随着目标模型中特征点间距离的增大而减小, 随着测量距离的增大而增大等结论。
横滚角对P3P位姿测量方法鲁棒性的影响分析
证明了当横滚角为 0度 或 ±90度时,测量位姿的鲁棒性较好,而当横滚角为 ±45度或 ±135度时,测量位姿的鲁棒性最差。
合作目标姿态对视觉位姿测量精度的影响分析
证明了在三个控制点构成等腰三角形的条件下,当等腰三角形的高线与摄像机光轴平行(合作目标构成的三角形所在平面与摄像机像平面垂直)时,测量结果的精度最高。
P3P位姿测量方法的误差
证明了在三个控制点构成等腰三角形的条件下,图像坐标的检测误差和像机内参数标定误差对测量位姿误差对影响较大,而目标测量模型的测量误差对位姿求解的影响可以忽略不计。