证明小于60阶的无非阿贝尔单群用到的定理
1.素数阶群
2.|G|=2k(k为奇数),则G不是非Abel单群,(G有一个指数为2的子群,并且指数为2的群一定是正规子群,An是Sn中指数为2的子群)
注:实际上任何奇数阶群都不是非Abel单群
3.G为p群,P1,P2,P1,P3,……
则G一定有中心,中心就是正规子群,则G不是非Abel单群
4.设q为G的因子中最小的素因子,若H<G,[G:H]=q,指数为q,则H是G的正规子群
考虑G在G/H上的左平移作用
σ
:
G
−
>
S
G
/
H
≃
S
q
σ:G->S_{G/H}\simeq S_{q}
σ:G−>SG/H≃Sq
推论
∣
G
∣
=
p
l
∗
q
,
p
,
q
为
素
数
,
p
>
q
,
则
G
的
s
y
l
o
w
−
p
−
子
群
的
指
数
为
q
,
为
正
规
子
群
|G|=p^l*q,p,q为素数,p>q,则G的sylow-p-子群的指数为q,为正规子群
∣G∣=pl∗q,p,q为素数,p>q,则G的sylow−p−子群的指数为q,为正规子群
当
然
,
也
可
用
s
y
l
o
w
相
关
的
定
理
计
算
s
y
l
o
w
−
p
−
子
群
的
个
数
当然,也可用sylow相关的定理计算sylow-p-子群的个数
当然,也可用sylow相关的定理计算sylow−p−子群的个数
n
p
∣
q
,
则
n
p
=
1
o
r
q
n_{p}|q,则n_{p}=1 or q
np∣q,则np=1orq
n
p
=
1
m
o
d
p
n_{p}=1 mod p
np=1modp
∣
G
∣
=
p
l
∗
m
,
m
<
p
,
G
的
s
y
l
o
w
−
p
−
子
群
p
<
m
<
2
p
,
则
看
G
的
阶
数
2
p
<
m
<
3
p
,
则
…
…
|G|=p^l*m,\\ m<p,G的sylow-p-子群\\p<m<2p,则看G的阶数\\2p<m<3p,则……
∣G∣=pl∗m,m<p,G的sylow−p−子群p<m<2p,则看G的阶数2p<m<3p,则……