为什么绝对收敛级数具有可交换性+为什么一般项级数不能使用比较判别法/等价判别法?

》绝对收敛,可以认为是级数某种“本质上”是收敛的,即其正项和负项的和分别是收敛的;而条件收敛,往往是正项负项的和不收敛,因为在级数中的排列导致互相抵消,所以“看起来”收敛了。

数列收敛,也就是数列的前N项和的极限存在。
对于正项数列。
在前N项改变数量之后仍小于原来顺序和的极限。
对于一般的绝对收敛数列只需将原来的正向和负项用同样的证明即可。

——————————————————————————————————————

而对于条件收敛的级数
将其正项和负项分离
正项的和和负项绝对值的和都是正无穷

黎曼重排定理:
a 为 常 数 , { u n } 的 正 向 及 负 项 { a n } { b n } a为常数, \left\{ u_{n} \right\} 的正向及负项 \left\{ a_{n} \right\} \left\{ b_{n} \right\} a{un}{an}{bn}

1>
对 于 { a n } , 存 在 前 n 1 项 有 : 前 n 1 − 1 项 的 和 小 于 等 于 a , 前 n 1 项 的 和 大 于 a 对于\left\{ a_{n} \right\},存在前n1项有:前n1-1项的和小于等于a,前n1项的和大于a {an}n1n11a,n1a

对 于 { b n } , , 加 上 前 边 的 n 1 项 , 存 在 共 n 2 项 有 : 前 n 2 − 1 项 的 和 大 于 等 于 a , 前 n 1 项 的 和 小 于 a 对于\left\{ b_{n} \right\},,加上前边的n1项,存在共n2项有:前n2-1项的和大于等于a,前n1项的和小于a {bn}n1n2n21a,n1a

2> 重复2k次,k次变换正负
每次变换最少添加一个元素,所以这是原来的一个重排。

3>
级数的部分和是vk,由三角不等式
则|vk-a|<|vk-v(k-1)|=|u(n)|(u(n)是部分和的最后一项,由于条件收敛,利用加逼证明收敛)

引用https://bbs.emath.ac.cn/thread-2272-1-1.html的回答
因为正无穷加负无穷没有意义,得不到一个确定的值。

就好比我在一个池子里加水;你在放水。

我能加的水量为正无穷;你能放的水量也是正无穷。

只要我们互相配合得当,想让水池里的水保持在哪个数量都可以。

而绝对收敛则不同。

我能加的水量有限;你能放的水量也是有限的。

这时才满足加法交换律。

无论我们以何种顺序加水放水,最终加出来的水量总是相同的。

为什么一般项级数不能使用比较判别法/等价判别法

等价判别法:交错的调和级数的级数收敛,但调和级数的级数发散

假设:若数列{an}的级数收敛,且|bn|小于或等于|an|恒成立,则bn的级数收敛。

也就是bn被夹在x轴和an之间的情况,

那么考虑到an可能是通过几项之间正负相消的方式达到收敛的,也就是条件收敛
比如取
a n = − ( 1 ) n + 1 1 n a_{n}=-(1)^{n+1}\frac{1}{n} an=(1)n+1n1
b n = a n , n 为 奇 数 ; b n = 0 , n 为 偶 数 ; b_{n}=a_{n},n为奇数;b_{n}=0,n为偶数; bn=ann;bn=0n;
对于全为正或负项的级数,如果|bn|小于|an|恒成立而an的级数绝对收敛,那么由正项的比较法bn的级数绝对收敛从而bn的级数收敛。


相关链接:
级数求和的方法:
在这里插入图片描述

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值