图的实现方法:
1.顶点表+邻接矩阵+图的点数和边数
2.邻接表矩阵+图的点数和边数
图
邻接矩阵表示:有边值为1(自己到自己没边的为0)
#include<stdio.h>
int main()
{
int arr[8][8] = {{0, 1, 1, 1, 1, 1, 0, 0},
{0, 0, 1, 0, 1, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 1, 0, 0, 0, 1, 1},
{0, 0, 0, 0, 0, 1, 0, 1},
{0, 0, 0, 0, 0, 1, 1, 0}} ;
for(int i=0;i<8;i++)
{
for(int j=0;j<8;j++)
printf(" %d",arr[i][j]);
printf(" \n");
}
return 0;
}
对于邻接矩阵参考书上更加详细的构造:
用邻接矩阵表示法表示图,除了一“个用于存储邻接矩阵的二维数组外",还需要一个一维数组用于存储顶点信息。
//-----图的邻接矩阵存储表示-----
#include <iostream>
using namespace std;
#define MaxInt 32767
//表示极大值,即∞
#define MVNum 100
//最大顶点数
typedef char VerTexType;//假设顶点的数据类型为字符型
typedef int ArcType;//假设边的权值类型为整型
typedef struct{
VerTexType vexs [MVNum];//顶点表
ArcType arcs [MVNum] [MVNum];//邻接矩阵
int vexnum, arcnum;//图的当前点数和边数
} AMGraph;
int CreateUDN (AMGraph &G)
{
cin>>G.vexnum>>G.arcnum;//输人总顶点数,总边数
for(i=0;i<G.vexnum;i++)
cin>>G.vexs[i];//依次输入点的信息(数组一)
for(i=0;i<G.vexnum;++i)//邻接矩阵初始化
for(j=0;j<G.vexnum; ++j)
G.arcs[i] [j] =MaxInt;
for(k=0;k<G.arcnum;++k)//构造邻接矩阵
{
cin>>v1>>v2>>w; //输人一条边依附的顶点及权值
i=locateVex(G, v1) ;j=LocateVex(G,v2); //确定v1和v2在G中的位置,即顶点数组的下标
G.arcs[i][j]=w; //边<v1, v2>的权值置为W
G.arcs[j][i]=G.arcs[i][j];//置<v1, v2>的对称边<v2, v1>的权值为w
}
return 1;
}
邻接表
邻接链表
typedef struct arcn //边类型 边的定义(或者树中孩子的定义)还是最简单的链表形式
{ int id;/*边另一端的数组索引*/ arcn *next; };//为了简化,边没有权重
typedef struct vn //顶点数组
{ arcn *next;};
typedef struct //图的构成
{ vn adjlist[100]; int vnum,arcnum;} G;
vector<vector<int>> buildGraph(vector<vector<int>>& prerequisites,int numCourses) { // prerequisites numCourses
vector<vector<int>> graph(numCourses);
inDegree.resize(numCourses,0);
for (auto pre: prerequisites) {
int from = pre[1];
int to = pre[0];
graph[from].push_back(to);
inDegree[to]++;
}
return graph;
}
CG
- 在线调试
- 带权重的图又称为网络
-
(邻接矩阵表示无向图可以只存下三角,网络需要引入#define INF 10000 )