Liouville定理(实际上是Liouville第二定理)+切比雪夫定理

举个栗子

∫ x ( 1 + x ) 2 e x d x \int \frac{x}{(1+x)^2} e^xdx (1+x)2xexdx
由 函 数 乘 积 与 函 数 复 合 的 求 导 法 则 知 x ( 1 + x ) 2 = a ( x ) + a ′ ( x ) 由函数乘积与函数复合的求导法则知 \frac{x}{(1+x)^2} =a(x)+a'(x) (1+x)2x=a(x)+a(x)
x ( 1 + x ) 2 = ( x + 1 ) − 1 ( 1 + x ) 2 = x + 1 ( 1 + x ) 2 − 1 ( 1 + x ) 2 \frac{x}{(1+x)^2}=\frac{(x+1)-1}{(1+x)^2}=\frac{x+1}{(1+x)^2}-\frac{1}{(1+x)^2} (1+x)2x=(1+x)2(x+1)1=(1+x)2x+1(1+x)21
I = 1 1 + x e x I=\frac{1}{1+x}e^x I=1+x1ex

定理

R ( x ) e p ( x ) R ( x ) 有 理 式 , p ( x ) 多 项 式 R(x)e^{p(x)} \\ R(x)有理式,p(x)多项式 R(x)ep(x)R(x),p(x)
∫ R ( x ) e p ( x ) d x = A [ x ] e p ( x ) , 并 且 A [ x ] 与 R ( x ) 形 式 一 致 , d e g ( A , x ) ≤ d e g ( R , x ) + 1 \int R(x)e^{p(x)} dx=A[x]e^p(x),并且A[x]与R(x)形式一致,deg(A,x) \leq deg(R,x)+1 R(x)ep(x)dx=A[x]ep(x),A[x]R(x),deg(A,x)deg(R,x)+1

简单粗略的证明

∫ R ( x ) e p ( x ) d x = [ a 1 ( x ) + b 1 ( x ) ] e p ( x ) \int R(x)e^{p(x)} dx=[a_{1}(x)+b_{1}(x)]e^{p(x)} R(x)ep(x)dx=[a1(x)+b1(x)]ep(x)

= ∫ ( p ′ ( x ) a 1 ( x ) + a 1 ′ ( x ) + R 1 ( x ) ) e p ( x ) d x = \int(p'(x)a_1(x)+a_1'(x)+ R_1(x) )e^{p(x)}dx =(p(x)a1(x)+a1(x)+R1(x))ep(x)dx
= a 1 ( x ) e p ( x ) + ∫ R 1 ( x ) e p ( x ) d x = a_1(x) e^{p(x)}+\int R_1(x) e^{p(x)}dx =a1(x)ep(x)+R1(x)ep(x)dx
提 首 项 , 令 a 1 ( x ) = c 1 x m 1 p ′ ( x ) Q ( x ) 提首项 ,令a_1(x)= \frac{c_1x^{m1}}{p'(x)Q(x)} a1(x)=p(x)Q(x)c1xm1
⇒ R 1 ( x ) = c 2 ( x ) x m 2 + S 2 ( x ) + U 1 ( x ) Q ( x ) \Rightarrow R_1(x)=\frac{c_2(x)x^{m2}+S_2(x)+U_1(x)}{Q(x)} R1(x)=Q(x)c2(x)xm2+S2(x)+U1(x)
其 中 S 2 ( x ) 是 多 项 式 , U 1 ( x ) 是 真 分 式 其中 S_2(x)是多项式,U_1(x)是真分式 S2(x)U1(x)
以 此 类 推 以此类推
∫ R ( x ) e p ( x ) d x = ∑ i = 1 n a i ( x ) e p ( x ) + ∫ U n ( x ) Q ( x ) e p ( x ) d x \int R(x)e^{p(x)} dx= \sum_{i=1}^{n} a_{i}(x)e^{p(x)}+\int \frac{U_n(x)}{Q(x)}e^{p(x)}dx R(x)ep(x)dx=i=1nai(x)ep(x)+Q(x)Un(x)ep(x)dx
如 果 U n ( x ) = 0 , 则 原 积 分 有 闭 形 式 解 , 否 则 无 闭 形 式 解 如果U_n(x)=0,则原积分有闭形式解,否则无闭形式解 Un(x)=0
符 号 计 算 选 讲 S e l e c t   L e c t u r e   i n   S y m b o l i c   C o m p u t a t i o n   符号计算选讲 Select \ Lecture \ in \ Symbolic\ Computation \ Select Lecture in Symbolic Computation 
e x 2 中 1 = 2 x ∗ 1 2 x , R 1 x = 1 − ( p ′ ( x ) a 1 ( x ) + a 1 ′ ( x ) = 1 2 x 2 ) e^{x^2}中 1=2x*\frac{1}{2x},R_1{x}=1-(p'(x)a_1(x)+a_1'(x)=\frac{1}{2x^2}) ex21=2x2x1,R1x=1p(x)a1(x)+a1(x)=2x21
将 所 有 的 整 数 的 x n 项 提 取 完 之 后 , 剩 余 U = = 1 2 x 2 不 为 零 将所有的整数的x^n项提取完之后,剩余U==\frac{1}{2x^2} 不为零 xnU==2x21






切比雪夫定理

∫ x m ( a + b x n ) p d x \int x^m(a+bx^n)^pdx xm(a+bxn)pdx
其中a,b均为实数, m,n,p为有理数。则该积分初等可积的条件分别为以下三种:

p 为 整 数 。 p为整数。 p
m + 1 n 为 整 数 。 \frac{m+1}{n}为整数。 nm+1
p + m + 1 n 为 整 数 。 p+\frac{m+1}{n} 为整数。 p+nm+1

无穷级数积分法最先是被牛顿使用的,当他发现了二项式定理后,就放弃了用于求积分的插值法,而采用二项式定理把函数展开成无穷级数,并逐项积分的方法

1.p是整数,直接二项式展开
2.p不是整数,惯用伎俩
在这里插入图片描述
t = a + b x t=a+b^x t=a+bx
( t − a ) m n d ( t − a ) 1 n , 求 导 乘 原 次 数 , 再 次 数 减 一 , 总 次 数 就 是 m n + 1 n − 1 (t-a)^{\frac{m}{n}}d(t-a)^{\frac{1}{n}} ,求导乘原次数,再次数减一,总次数就是 \frac{m}{n} + \frac{1}{n}-1 (ta)nmd(ta)n1nm+n11
第 三 种 情 况 , 第三种情况,

∫ x m ( a + b x n ) p d x = ∫ x m + n p ( a x − n + b ) p d x , 处 理 和 2 一 样 \int x^m(a+bx^n)^pdx=\int x^{m+np}(ax^{-n}+b)^pdx,处理和2一样 xm(a+bxn)pdx=xm+np(axn+b)pdx,2
在这里插入图片描述
图片来源与一些参考:

https://www.zhihu.com/question/357044799
https://www.zhihu.com/question/397590932/answer/1248588688

积分表
给喜欢搞积的人一些建议

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值