有限布尔代数的表示理论:由集合生成的布尔代数

基 底 基底
称 ( L , ∗ , + , ¬ , 0 , 1 ) 是 布 尔 代 数 , n 维 布 尔 代 数 中 e 1 , … … , e n 是 L 得 一 组 基 地 , 若 ∀ a ∈ L , a = k 1 e 1 + k 2 e 2 + … … + k n e n ( 其 中 k i 为 代 数 系 统 中 得 0 元 或 1 元 ) 称(L,*,+,\neg,0,1)是布尔代数,n维布尔代数中e_1,……,e_n是L得一组基地,若\\ \forall a \in L,a=k_1 e_1+k_2 e_2+……+k_n e_n(其中k_i为代数系统中得0元或1元) (L,,+,¬,0,1)ne1,,enLaL,a=k1e1+k2e2++knen(ki01)

例 : 设 S 30 是 30 的 所 有 正 因 数 做 成 的 集 合 。 对 任 意 a , b ∈ S 30 规 定 运 算 a + b 为 a 、 b 的 最 小 公 倍 数 a ∗ b 为 a 、 b 的 最 大 公 约 数 。 则 ( S 30 , ∗ , + , 1 , 30 ) 是 布 尔 代 数 , 1 是 其 最 小 元 素 , 30 是 其 最 大 元 素 。 该 布 尔 代 数 的 基 底 为 2 , 3 , 5 : 1 = ( 1 ∗ 2 ) + ( 1 ∗ 3 ) + ( 1 ∗ 5 ) , 2 = ( 30 ∗ 2 ) + ( 1 ∗ 3 ) + ( 1 ∗ 5 ) , 3 = ( 1 ∗ 2 ) + ( 30 ∗ 3 ) + ( 1 ∗ 5 ) , 5 = ( 1 ∗ 2 ) + ( 1 ∗ 3 ) + ( 30 ∗ 5 ) , 6 = ( 30 ∗ 2 ) + ( 30 ∗ 3 ) + ( 1 ∗ 5 ) , 10 = ( 30 ∗ 2 ) + ( 1 ∗ 3 ) + ( 30 ∗ 5 ) 15 = ( 1 ∗ 2 ) + ( 30 ∗ 3 ) + ( 30 ∗ 5 ) , 30 = ( 30 ∗ 2 ) + ( 30 ∗ 3 ) + ( 30 ∗ 5 ) 例: 设S_{30}是30的所有正因数做成的集合。对任 意a, b∈S_{30}\\ 规定运算a+b为a、b的最小公倍数 a*b为a、b的最大公约数。\\ 则(S_{30},*,+, 1, 30)是布尔代数,1是其最小元 素,30是其最大元素。\\ 该布尔代数的基底为2, 3,5:\\ 1=(1*2)+(1*3)+(1*5), 2=(30*2)+(1*3)+(1*5), 3=(1*2)+(30*3)+(1*5), 5=(1*2)+(1*3)+(30*5), 6=(30*2)+(30*3)+(1*5), 10=(30*2)+(1*3)+(30*5) 15=(1*2)+(30*3)+(30*5), 30=(30*2)+(30*3)+(30*5) :S3030a,bS30a+bababab(S30,+,1,30)1302,3,5:1=(12)+(13)+(15)2=(302)+(13)+(15)3=(12)+(303)+(15),5=(12)+(13)+(305)6=(302)+(303)+(15),10=(302)+(13)+(305)15=(12)+(303)+(305)30=(302)+(303)+(305)
在这里插入图片描述
原 子 ( 极 小 元 ) : 哈 斯 图 中 盖 住 0 的 所 有 元 素 原子(极小元):哈斯图中盖住0的所有元素 0
有 限 布 尔 代 数 得 基 底 必 是 此 代 数 得 所 有 极 小 元 素 , 反 之 亦 成 立 有限布尔代数得基底必是此代数得所有极小元素,反之亦成立
性 质 1 : e 1 + e 2 + … … + e n = 1 性 质 2 : 有 限 布 尔 代 数 得 基 底 唯 一 性质1:e_1+e_2+……+e_n=1\\ 性质2:有限布尔代数得基底唯一 1e1+e2++en=12

由集合生成得布尔代数

对 于 一 个 布 尔 代 数 ( L , ∗ , + , ¬ , 0 , 1 ) , s 1 , s 2 , s i 为 L 中 得 元 素 集 合 S 中 得 元 素 为 ∑ x 1 ∗ … ∗ x i , x i 或 为 s i 或 为 s i ˉ ∣ 可 证 ( S , ∗ , + , ¬ , 0 , 1 ) 为 布 尔 代 数 , 称 为 由 { s 1 , s 2 , … s i } 生 成 得 布 尔 代 数 对于一个布尔代数(L,*,+,\neg,0,1),s_1,s_2,s_i为L中得元素\\ 集合S中得元素为\sum x_{1}*…*x_{i},x_{i}或为s_i或为\bar {s_i}|\\ 可证(S,*,+,\neg,0,1)为布尔代数,称为由\{s_1,s_2,…s_i\}生成得布尔代数 (L,,+,¬,0,1),s1,s2,siLSx1xixisisiˉ(S,,+,¬,0,1){s1,s2,si}
例 : ( S 30 , ∗ , + , ¬ , 0 , 1 ) 中 由 { 2 , 6 } 生 成 得 布 尔 代 数 为 ( S 30 , ∗ , + , ¬ , 0 , 1 ) 由 { 1 , 30 } 生 成 得 布 尔 代 数 为 ( { 1 , 30 } , ∗ , + , ¬ , 0 , 1 ) 由 { 2 } 生 成 得 布 尔 代 数 为 ( { 1 , 2 , 15 , 30 } , ∗ , + , ¬ , 0 , 1 ) 例:(S_{30},*,+,\neg,0,1)中\\ 由\{2,6\}生成得布尔代数为(S_{30},*,+,\neg,0,1)\\ 由\{1,30\}生成得布尔代数为(\{1,30\},*,+,\neg,0,1)\\ 由\{2\}生成得布尔代数为(\{1,2,15,30\},*,+,\neg,0,1)\\ :(S30,,+,¬,0,1){2,6}(S30,,+,¬,0,1){1,30}({1,30},,+,¬,0,1){2}({1,2,15,30},,+,¬,0,1)

[ S t o n e 定 理 ] : 任 意 有 限 布 尔 代 数 < B , ∨ , ∧ , − > , M 是 所 有 原 子 构 成 的 集 合 , 则 < B , ∨ , ∧ , − > 与 < P ( M ) , ∪ , ∩ , ~ > 同 构 [Stone定理]:任意有限布尔代数<B,∨,∧,->,M是所有原子构成的集合,则<B,∨,∧,->与<P(M),\cup,\cap,~>同构 [Stone]:<B,,,>,M<B,,,><P(M),,,>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值