σ,τ道路同轮
用[0,1]到开集的映射定义道路后,定义两个映射的道路同伦 σ ≃ p τ σ\simeq_pτ σ≃pτ:
假
设
σ
,
τ
都
是
X
中
从
x
0
到
x
1
的
道
路
(
即
道
路
的
起
点
与
终
点
相
同
)
如
果
存
在
伦
移
F
:
I
×
I
→
X
s
.
t
.
F
(
s
,
0
)
=
σ
(
s
)
,
F
(
s
,
1
)
=
τ
(
s
)
。
假设σ,τ都是X中从x_0到x_1的道路(即道路的起点与终点相同)\\ 如果存在伦移F:I×I\rightarrow X\ \ s.t.\ F(s,0)=σ(s),F(s,1)=τ(s)。
假设σ,τ都是X中从x0到x1的道路(即道路的起点与终点相同)如果存在伦移F:I×I→X s.t. F(s,0)=σ(s),F(s,1)=τ(s)。
并
且
F
(
0
,
t
)
=
x
0
,
F
(
1
,
t
)
=
x
1
(
即
伦
移
保
持
起
点
与
终
点
)
并且F(0,t)=x_0,F(1,t)=x_1(即伦移保持起点与终点)
并且F(0,t)=x0,F(1,t)=x1(即伦移保持起点与终点)
.— … -…- -… . -. -…- --.- …- -. -…- -… … -…- … .- -. -…- .— … .
X 中 所 有 的 x 0 道 x 1 的 集 合 中 道 路 同 伦 是 等 价 关 系 X中所有的x_0道x_1的集合中道路同伦是等价关系 X中所有的x0道x1的集合中道路同伦是等价关系
道路同伦等价类
给 定 X 中 一 点 x 0 , 有 P X = { σ : I → X ∣ σ ( 0 ) = x 0 } 也 就 是 空 间 中 所 有 起 点 在 x 0 的 道 路 的 集 合 , 其 上 能 赋 予 紧 开 拓 扑 存 在 映 射 π : P X 到 X , π ( x ) = σ ( 1 ) ( 终 点 ) 若 给 定 x 1 , 则 有 π − 1 ( x 1 ) = { σ : I → X ∣ σ ( 0 ) = x 0 , σ ( 1 ) = x 1 } 也 就 是 空 间 中 所 有 起 点 在 x 0 , 终 点 在 x 1 的 道 路 的 集 合 然 后 在 集 合 中 商 掉 “ 道 路 同 伦 ” 的 等 价 关 系 道 路 同 伦 等 价 类 集 合 : π − 1 ( x 1 ) / ≃ p 给定X中一点x_0,有PX=\{σ:I\rightarrow X| σ(0)=x_0 \}\\ \tiny 也就是空间中所有起点在x_0的道路的集合,其上能赋予紧开拓扑\\ \normalsize 存在映射\pi :PX到X,\pi (x)=σ(1)(终点)\\ 若给定x_1,则有\pi^{-1}(x_1)=\{σ:I\rightarrow X|σ(0)=x_0 ,σ(1)=x_1 \}\\ \tiny 也就是空间中所有起点在x_0,终点在x_1的道路的集合\\ \normalsize 然后在集合中商掉“道路同伦”的等价关系\\ 道路同伦等价类集合:\pi^{-1}(x_1)/\simeq_p 给定X中一点x0,有PX={σ:I→X∣σ(0)=x0}也就是空间中所有起点在x0的道路的集合,其上能赋予紧开拓扑存在映射π:PX到X,π(x)=σ(1)(终点)若给定x1,则有π−1(x1)={σ:I→X∣σ(0)=x0,σ(1)=x1}也就是空间中所有起点在x0,终点在x1的道路的集合然后在集合中商掉“道路同伦”的等价关系道路同伦等价类集合:π−1(x1)/≃p
道路的连接
道 路 的 连 接 : σ , τ 都 是 X 道 路 , 若 σ ( 1 ) = τ ( 0 ) , 用 数 学 语 言 将 两 个 道 路 拼 接 起 来 则 σ ∗ τ ( s ) : I → X = { σ ( 2 s ) s ∈ [ 0 , 1 2 ] τ ( 2 s − 1 ) s ∈ [ 1 2 , 1 ] 道路的连接:σ,τ都是X道路,若σ(1)=τ(0),用数学语言将两个道路拼接起来 \\则σ*τ(s):I\rightarrow X=\begin{cases} σ(2s)&s\in[0,\frac{1}{2}]\\ τ(2s-1)&s\in[\frac{1}{2},1] \end{cases} 道路的连接:σ,τ都是X道路,若σ(1)=τ(0),用数学语言将两个道路拼接起来则σ∗τ(s):I→X={σ(2s)τ(2s−1)s∈[0,21]s∈[21,1]
Ω X / ≃ p ΩX/\simeq_p ΩX/≃p
特
别
的
:
当
x
0
=
x
1
时
,
集
合
记
为
Ω
X
,
赋
予
紧
开
拓
扑
称
为
回
路
空
间
\tiny 特别的:当x_0=x_1时,集合记为ΩX,赋予紧开拓扑称为回路空间
特别的:当x0=x1时,集合记为ΩX,赋予紧开拓扑称为回路空间
考
虑
Ω
X
/
≃
p
,
在
其
上
定
义
乘
法
:
在
Ω
X
中
的
任
何
两
条
闭
路
σ
,
τ
都
有
乘
法
(
一
定
满
足
σ
(
1
)
=
τ
(
0
)
)
考虑ΩX/\simeq_p,在其上定义乘法:\\ 在ΩX中的任何两条闭路σ,τ都有乘法(一定满足σ(1)=τ(0))
考虑ΩX/≃p,在其上定义乘法:在ΩX中的任何两条闭路σ,τ都有乘法(一定满足σ(1)=τ(0))
道路乘积的性质很差:
在
X
中
的
道
路
有
σ
≃
p
σ
∗
,
τ
≃
p
τ
∗
,
如
果
σ
(
1
)
=
τ
(
0
)
,
如
下
图
所
示
则
道
路
乘
积
σ
∗
τ
≃
p
σ
∗
∗
τ
∗
(
证
略
)
在X中的道路有σ\simeq_p σ^* , τ\simeq_p τ^*,如果σ(1)=τ(0),如下图所示\\ 则道路乘积σ*τ\simeq_p \ σ^**τ^*(证略)
在X中的道路有σ≃pσ∗,τ≃pτ∗,如果σ(1)=τ(0),如下图所示则道路乘积σ∗τ≃p σ∗∗τ∗(证略)
三条道路
σ,τ,w
.— … -…- -… . -. -…- --.- …- -. -…- … … -…- … … -…- . . -. -…- – … -.
(
σ
∗
τ
)
∗
w
与
σ
∗
(
τ
∗
w
)
不
满
足
结
合
律
,
但
是
是
同
伦
的
(σ* τ)*w 与σ*(τ*w)不满足结合律,但是是同伦的
(σ∗τ)∗w与σ∗(τ∗w)不满足结合律,但是是同伦的
(
σ
∗
τ
)
∗
w
(
s
)
=
{
σ
∗
τ
(
2
s
)
s
∈
[
0
,
1
2
]
w
(
2
s
−
1
)
s
∈
[
1
2
,
1
]
=
(
σ
∗
τ
)
∗
w
(
s
)
=
{
σ
(
4
s
)
s
∈
[
0
,
1
4
]
τ
(
4
s
)
s
∈
[
1
4
,
1
2
]
w
(
2
s
−
1
)
s
∈
[
1
2
,
1
]
\tiny (σ* τ)*w(s) =\begin{cases} σ* τ(2s)&s\in[0,\frac{1}{2}]\\ w(2s-1)&s\in[\frac{1}{2},1]\\ \end{cases} = \tiny (σ* τ)*w(s) =\begin{cases} σ(4s)&s\in[0,\frac{1}{4}]\\ τ(4s)&s\in[\frac{1}{4},\frac{1}{2}]\\ w(2s-1)&s\in[\frac{1}{2},1]\\ \end{cases}
(σ∗τ)∗w(s)={σ∗τ(2s)w(2s−1)s∈[0,21]s∈[21,1]=(σ∗τ)∗w(s)={σ(4s)τ(4s)w(2s−1)s∈[0,41]s∈[41,21]s∈[21,1]
σ
∗
(
τ
∗
w
)
(
s
)
=
{
σ
(
2
s
)
s
∈
[
0
,
1
2
]
(
τ
∗
w
)
(
2
s
−
1
)
s
∈
[
1
2
,
1
]
=
(
σ
∗
τ
)
∗
w
(
s
)
=
{
σ
(
2
s
)
s
∈
[
0
,
1
2
]
τ
(
4
s
−
2
)
s
∈
[
1
2
,
3
4
]
w
(
4
s
−
3
)
s
∈
[
3
4
,
1
]
\tiny σ* (τ*w)(s) =\begin{cases} σ(2s)&s\in[0,\frac{1}{2}]\\ (τ*w)(2s-1)&s\in[\frac{1}{2},1]\\ \end{cases} = \tiny (σ* τ)*w(s) =\begin{cases} σ(2s)&s\in[0,\frac{1}{2}]\\ τ(4s-2) &s\in[\frac{1}{2},\frac{3}{4}]\\ w(4s-3)&s\in[\frac{3}{4},1]\\ \end{cases}
σ∗(τ∗w)(s)={σ(2s)(τ∗w)(2s−1)s∈[0,21]s∈[21,1]=(σ∗τ)∗w(s)={σ(2s)τ(4s−2)w(4s−3)s∈[0,21]s∈[21,43]s∈[43,1]
F
(
S
,
t
)
在
[
0
,
交
点
1
]
为
σ
,
[
交
点
1
,
交
点
2
]
为
τ
,
[
交
点
2
,
1
]
为
w
F(S,t)在[0,交点1]为σ,[交点1,交点2]为τ,[交点2,1]为w
F(S,t)在[0,交点1]为σ,[交点1,交点2]为τ,[交点2,1]为w
基本群
以 x 0 为 起 点 与 终 点 的 闭 路 关 于 道 路 同 伦 的 等 价 类 的 集 合 Ω X / ≃ p , 现 将 其 记 为 π 1 ( X , x 0 ) 闭 路 的 等 价 类 σ ˉ = { τ : I → X ∣ σ ≃ p τ } 为 其 中 元 素 , σ 为 代 表 元 以x_0为起点与终点的闭路关于道路同伦的等价类的集合ΩX/\simeq_p,\\现将其记为\pi_1(X,x_0)\\ 闭路的等价类\bar σ =\{τ:I\rightarrow X| σ \simeq_p τ \}为其中元素,σ为代表元 以x0为起点与终点的闭路关于道路同伦的等价类的集合ΩX/≃p,现将其记为π1(X,x0)闭路的等价类σˉ={τ:I→X∣σ≃pτ}为其中元素,σ为代表元
在 X 中 的 道 路 有 σ ≃ p σ ∗ , τ ≃ p τ ∗ , 如 果 σ ( 1 ) = τ ( 0 ) , 如 下 图 所 示 则 道 路 乘 积 σ ∗ τ ≃ p σ ∗ ∗ τ ∗ , σ ∗ τ ‾ = σ ∗ ∗ τ ∗ ‾ 在X中的道路有σ\simeq_p σ^* , τ\simeq_p τ^*,如果σ(1)=τ(0),如下图所示\\ 则道路乘积σ*τ\simeq_p \ σ^**τ^*,\overline{σ*τ}= \overline{ σ^**τ^*} 在X中的道路有σ≃pσ∗,τ≃pτ∗,如果σ(1)=τ(0),如下图所示则道路乘积σ∗τ≃p σ∗∗τ∗,σ∗τ=σ∗∗τ∗
在 π 1 ( X , x 0 ) 中 定 义 乘 法 ∗ : σ ˉ ∗ τ ˉ = σ ∗ τ ‾ 在\pi_1(X,x_0)中定义乘法*:\barσ*\barτ =\overline{σ*τ} 在π1(X,x0)中定义乘法∗:σˉ∗τˉ=σ∗τ
可证 π 1 ( X , x 0 ) \pi_1(X,x_0) π1(X,x0)在以上乘积构成群,称为X的基本群
其
上
的
单
位
元
e
:
C
x
0
:
I
→
X
,
∀
s
∈
I
,
C
x
0
(
s
)
=
x
0
逆
元
σ
−
1
:
σ
−
1
(
s
)
=
σ
(
1
−
s
)
其上的单位元e:C_{x_0}:I\rightarrow X,\forall s\in I ,C_{x_0}(s)=x_0\\ 逆元σ^{-1}:σ^{-1}(s)=σ(1-s)
其上的单位元e:Cx0:I→X,∀s∈I,Cx0(s)=x0逆元σ−1:σ−1(s)=σ(1−s)
(一般地,因为连接的先后,群不是交换群)