道路同轮与基本群

σ,τ道路同轮

用[0,1]到开集的映射定义道路后,定义两个映射的道路同伦 σ ≃ p τ σ\simeq_pτ σpτ

假 设 σ , τ 都 是 X 中 从 x 0 到 x 1 的 道 路 ( 即 道 路 的 起 点 与 终 点 相 同 ) 如 果 存 在 伦 移 F : I × I → X    s . t .   F ( s , 0 ) = σ ( s ) , F ( s , 1 ) = τ ( s ) 。 假设σ,τ都是X中从x_0到x_1的道路(即道路的起点与终点相同)\\ 如果存在伦移F:I×I\rightarrow X\ \ s.t.\ F(s,0)=σ(s),F(s,1)=τ(s)。 στXx0x1()FI×IX  s.t. F(s,0)=σ(s),F(s,1)=τ(s)
并 且 F ( 0 , t ) = x 0 , F ( 1 , t ) = x 1 ( 即 伦 移 保 持 起 点 与 终 点 ) 并且F(0,t)=x_0,F(1,t)=x_1(即伦移保持起点与终点) F(0,t)=x0,F(1,t)=x1
在这里插入图片描述
.— … -…- -… . -. -…- --.- …- -. -…- -… … -…- … .- -. -…- .— … .

X 中 所 有 的 x 0 道 x 1 的 集 合 中 道 路 同 伦 是 等 价 关 系 X中所有的x_0道x_1的集合中道路同伦是等价关系 Xx0x1

道路同伦等价类

给 定 X 中 一 点 x 0 , 有 P X = { σ : I → X ∣ σ ( 0 ) = x 0 } 也 就 是 空 间 中 所 有 起 点 在 x 0 的 道 路 的 集 合 , 其 上 能 赋 予 紧 开 拓 扑 存 在 映 射 π : P X 到 X , π ( x ) = σ ( 1 ) ( 终 点 ) 若 给 定 x 1 , 则 有 π − 1 ( x 1 ) = { σ : I → X ∣ σ ( 0 ) = x 0 , σ ( 1 ) = x 1 } 也 就 是 空 间 中 所 有 起 点 在 x 0 , 终 点 在 x 1 的 道 路 的 集 合 然 后 在 集 合 中 商 掉 “ 道 路 同 伦 ” 的 等 价 关 系 道 路 同 伦 等 价 类 集 合 : π − 1 ( x 1 ) / ≃ p 给定X中一点x_0,有PX=\{σ:I\rightarrow X| σ(0)=x_0 \}\\ \tiny 也就是空间中所有起点在x_0的道路的集合,其上能赋予紧开拓扑\\ \normalsize 存在映射\pi :PX到X,\pi (x)=σ(1)(终点)\\ 若给定x_1,则有\pi^{-1}(x_1)=\{σ:I\rightarrow X|σ(0)=x_0 ,σ(1)=x_1 \}\\ \tiny 也就是空间中所有起点在x_0,终点在x_1的道路的集合\\ \normalsize 然后在集合中商掉“道路同伦”的等价关系\\ 道路同伦等价类集合:\pi^{-1}(x_1)/\simeq_p Xx0PX={σ:IXσ(0)=x0}x0π:PXX,π(x)=σ(1)x1,π1(x1)={σ:IXσ(0)=x0,σ(1)=x1}x0,x1π1(x1)/p

道路的连接

道 路 的 连 接 : σ , τ 都 是 X 道 路 , 若 σ ( 1 ) = τ ( 0 ) , 用 数 学 语 言 将 两 个 道 路 拼 接 起 来 则 σ ∗ τ ( s ) : I → X = { σ ( 2 s ) s ∈ [ 0 , 1 2 ] τ ( 2 s − 1 ) s ∈ [ 1 2 , 1 ] 道路的连接:σ,τ都是X道路,若σ(1)=τ(0),用数学语言将两个道路拼接起来 \\则σ*τ(s):I\rightarrow X=\begin{cases} σ(2s)&s\in[0,\frac{1}{2}]\\ τ(2s-1)&s\in[\frac{1}{2},1] \end{cases} στXσ(1)=τ(0),στs:IX={σ(2s)τ(2s1)s[0,21]s[21,1]

Ω X / ≃ p ΩX/\simeq_p ΩX/p

特 别 的 : 当 x 0 = x 1 时 , 集 合 记 为 Ω X , 赋 予 紧 开 拓 扑 称 为 回 路 空 间 \tiny 特别的:当x_0=x_1时,集合记为ΩX,赋予紧开拓扑称为回路空间 x0=x1ΩX,
考 虑 Ω X / ≃ p , 在 其 上 定 义 乘 法 : 在 Ω X 中 的 任 何 两 条 闭 路 σ , τ 都 有 乘 法 ( 一 定 满 足 σ ( 1 ) = τ ( 0 ) ) 考虑ΩX/\simeq_p,在其上定义乘法:\\ 在ΩX中的任何两条闭路σ,τ都有乘法(一定满足σ(1)=τ(0)) ΩX/p:ΩXστσ(1)=τ(0)

道路乘积的性质很差:

在 X 中 的 道 路 有 σ ≃ p σ ∗ , τ ≃ p τ ∗ , 如 果 σ ( 1 ) = τ ( 0 ) , 如 下 图 所 示 则 道 路 乘 积 σ ∗ τ ≃ p   σ ∗ ∗ τ ∗ ( 证 略 ) 在X中的道路有σ\simeq_p σ^* , τ\simeq_p τ^*,如果σ(1)=τ(0),如下图所示\\ 则道路乘积σ*τ\simeq_p \ σ^**τ^*(证略) Xσpσ,τpτ,σ(1)=τ(0),στp στ()
在这里插入图片描述

三条道路

σ,τ,w
.— … -…- -… . -. -…- --.- …- -. -…- … … -…- … … -…- . . -. -…- – … -.
( σ ∗ τ ) ∗ w 与 σ ∗ ( τ ∗ w ) 不 满 足 结 合 律 , 但 是 是 同 伦 的 (σ* τ)*w 与σ*(τ*w)不满足结合律,但是是同伦的 (στ)wσ(τw)
( σ ∗ τ ) ∗ w ( s ) = { σ ∗ τ ( 2 s ) s ∈ [ 0 , 1 2 ] w ( 2 s − 1 ) s ∈ [ 1 2 , 1 ] = ( σ ∗ τ ) ∗ w ( s ) = { σ ( 4 s ) s ∈ [ 0 , 1 4 ] τ ( 4 s ) s ∈ [ 1 4 , 1 2 ] w ( 2 s − 1 ) s ∈ [ 1 2 , 1 ] \tiny (σ* τ)*w(s) =\begin{cases} σ* τ(2s)&s\in[0,\frac{1}{2}]\\ w(2s-1)&s\in[\frac{1}{2},1]\\ \end{cases} = \tiny (σ* τ)*w(s) =\begin{cases} σ(4s)&s\in[0,\frac{1}{4}]\\ τ(4s)&s\in[\frac{1}{4},\frac{1}{2}]\\ w(2s-1)&s\in[\frac{1}{2},1]\\ \end{cases} (στ)ws={στ(2s)w(2s1)s[0,21]s[21,1]=(στ)ws={σ(4s)τ(4s)w(2s1)s[0,41]s[41,21]s[21,1]

σ ∗ ( τ ∗ w ) ( s ) = { σ ( 2 s ) s ∈ [ 0 , 1 2 ] ( τ ∗ w ) ( 2 s − 1 ) s ∈ [ 1 2 , 1 ] = ( σ ∗ τ ) ∗ w ( s ) = { σ ( 2 s ) s ∈ [ 0 , 1 2 ] τ ( 4 s − 2 ) s ∈ [ 1 2 , 3 4 ] w ( 4 s − 3 ) s ∈ [ 3 4 , 1 ] \tiny σ* (τ*w)(s) =\begin{cases} σ(2s)&s\in[0,\frac{1}{2}]\\ (τ*w)(2s-1)&s\in[\frac{1}{2},1]\\ \end{cases} = \tiny (σ* τ)*w(s) =\begin{cases} σ(2s)&s\in[0,\frac{1}{2}]\\ τ(4s-2) &s\in[\frac{1}{2},\frac{3}{4}]\\ w(4s-3)&s\in[\frac{3}{4},1]\\ \end{cases} σ(τw)s={σ(2s)(τw)(2s1)s[0,21]s[21,1]=(στ)ws={σ(2s)τ(4s2)w(4s3)s[0,21]s[21,43]s[43,1]
在这里插入图片描述
F ( S , t ) 在 [ 0 , 交 点 1 ] 为 σ , [ 交 点 1 , 交 点 2 ] 为 τ , [ 交 点 2 , 1 ] 为 w F(S,t)在[0,交点1]为σ,[交点1,交点2]为τ,[交点2,1]为w F(S,t)[0,1]σ[1,2]τ[2,1]w

基本群

以 x 0 为 起 点 与 终 点 的 闭 路 关 于 道 路 同 伦 的 等 价 类 的 集 合 Ω X / ≃ p , 现 将 其 记 为 π 1 ( X , x 0 ) 闭 路 的 等 价 类 σ ˉ = { τ : I → X ∣ σ ≃ p τ } 为 其 中 元 素 , σ 为 代 表 元 以x_0为起点与终点的闭路关于道路同伦的等价类的集合ΩX/\simeq_p,\\现将其记为\pi_1(X,x_0)\\ 闭路的等价类\bar σ =\{τ:I\rightarrow X| σ \simeq_p τ \}为其中元素,σ为代表元 x0ΩX/pπ1(X,x0)σˉ={τ:IXσpτ},σ

在 X 中 的 道 路 有 σ ≃ p σ ∗ , τ ≃ p τ ∗ , 如 果 σ ( 1 ) = τ ( 0 ) , 如 下 图 所 示 则 道 路 乘 积 σ ∗ τ ≃ p   σ ∗ ∗ τ ∗ , σ ∗ τ ‾ = σ ∗ ∗ τ ∗ ‾ 在X中的道路有σ\simeq_p σ^* , τ\simeq_p τ^*,如果σ(1)=τ(0),如下图所示\\ 则道路乘积σ*τ\simeq_p \ σ^**τ^*,\overline{σ*τ}= \overline{ σ^**τ^*} Xσpσ,τpτ,σ(1)=τ(0),στp στ,στ=στ

在 π 1 ( X , x 0 ) 中 定 义 乘 法 ∗ : σ ˉ ∗ τ ˉ = σ ∗ τ ‾ 在\pi_1(X,x_0)中定义乘法*:\barσ*\barτ =\overline{σ*τ} π1(X,x0)σˉτˉ=στ

可证 π 1 ( X , x 0 ) \pi_1(X,x_0) π1(X,x0)在以上乘积构成群,称为X的基本群

其 上 的 单 位 元 e : C x 0 : I → X , ∀ s ∈ I , C x 0 ( s ) = x 0 逆 元 σ − 1 : σ − 1 ( s ) = σ ( 1 − s ) 其上的单位元e:C_{x_0}:I\rightarrow X,\forall s\in I ,C_{x_0}(s)=x_0\\ 逆元σ^{-1}:σ^{-1}(s)=σ(1-s) e:Cx0:IX,sI,Cx0(s)=x0σ1σ1(s)=σ(1s)
(一般地,因为连接的先后,群不是交换群)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值