python编程细节: 模型的训练与测试模式+变量管理AverageMeter()

inplace=False1

多使用inplace=False,否则可能报错:
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [1, 32, 22, 256, 256]], which is output 0 of ReluBackward1, is at version 3; expected version 2 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

对paramer迭代转为list

params = cof
TypeError: params argument given to the optimizer should be an iterable of Tensors or dicts, but got torch.FloatTensor
import  torch
cof = torch.eye(512)
params = list(cof) # list(model.encoder.parameters()) 
optimizer = torch.optim.Adam(params, 1e-4)

Pytorch遇到的坑——训练模式和测试模式切换

Pytorch的训练模式和测试模式切换
由于训练的时候Dropout和BN层起作用,每个batch BN层的参数不一样,dropout在训练时随机失效点具有随机性,所以训练和测试要区分开来。
使用时切记要根据实际情况切换:
model.train()
model.eval()

train:如果model是train的状态,intermediate varaible和computation graph会被保留,这些将来都会在backprop的时候用来计算gradient。因此,速度会比eval慢。eval:如果model是eval的状态,intermediate variable和computation graph不会被保留。因此速度会比train快。


变量管理AverageMeter()(初始化,get/set方法)

在train函数中采用自定义的AverageMeter类来管理一些变量的更新
在初始化的时候就调用的重置方法reset。当调用该类对象的update方法的时候就会进行变量更新,当要读取某个变量的时候,可以通过对象.属性的方式来读取,比如在train函数中的top1.val读取top1准确率。

AverageMeter()的作用与用法

AverageMeter类来管理变量。在初始化的时候就调用的重置方法reset。当调用该类对象的update方法的时候就会进行变量更新,当要读取某个变量的时候,可以通过对象.属性的方式来读取,比如在train函数中的top1.val读取top1准确率。
AverageMeter可以记录当前的输出,累加到某个变量之中,然后根据需要可以打印出历史上的平均。

class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

这样在调用的时候,可以先声明
obj = AverageMeter()
需要将所有变量清零的时候,调用
obj.reset()
然后需要更新某个变量的时候
obj.update(x)
这样的话比如想要求平均,就可以直接用
obj.avg

def train(train_loader, model, criterion, optimizer, epoch):
    """Train for one epoch on the training set"""
    batch_time = AverageMeter()
    # measure elapsed time
    batch_time.update(time.time() - end)

  1. 在这里插入图片描述 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值