SAP中分配和分摊的区别

企业实际业务中,总有一些费用难以明确指定属于哪个成本中心,比如公共费用、行政费用,在SAP里的处理方法就是将其归纳到公共成本中心中,然后按照一定的规则分配 分摊到其他成本中心。

例如,企业内有有几个生产车间,在生成过程中产生了水电费,在收到发票后,先将费用归集到公共的成本中心,然后根据各个车间的耗电量或者产量进行分摊,在CO模块里,首先定义分摊规则,一般是根据产量或者固定比例进行分摊分配。

分配是将费用以初级成本要素从发送方转给接收方,分摊是将费用以次级成本要素的形式从发送方转到接收方,例如某个公司公共成本中心收集到的水电费如下,分配规则是按照固定比例;
在这里插入图片描述

如果以分配的方式将水电费用分给三个生产车间,分配完成后,费用是以初级成本要素的形式流入三个生产车间;

在这里插入图片描述

如果是以分摊的形式将水电费分给三个生产车间,分摊结束后,公共成本中心的余额应该是0,通过次级成本要素 制造费用 流向三个生产车间;
在这里插入图片描述

两者的区别主要在于分摊是将费用统一进次级成本要素之后进行拆分进入生产成本中心,分配是以初级成本要素的方式直接进入三个成本中心,一个次级成本要素往往对应多个初级成本要素,如人工、燃料、折旧费、制造费用。

### SAP分摊分配、迭代与累计的区别 #### 分摊 (Allocation) 分摊是指将多个原始成本要素的费用汇总至一个次级成本要素(类别:42),并将其从一个成本中心转移到其他成本中心或其他成本对象的过程。此过程通常用于将间接费用集中处理后再重新分配给受益的成本中心或对象。 具体实现方式如下: - 创建分摊循环 `KSU1`,定义如何将费用通过次级成本要素进行转移。 - 执行分摊操作 `KSU5`,完成费用的实际转移[^3]。 #### 分配 (Distribution) 分配则是指基于特定规则,将某一成本中心的费用直接按比例分配到其他若干个成本中心或其他成本对象中的过程。其核心在于不涉及次级成本要素,而是直接利用原始成本要素进行费用转移。 具体实现方式如下: - 创建分配循环 `KSV1`,设置分配的比例目标成本中心。 - 输入统计指标实际值 `KB31N`,作为分配的基础数据。 - 执行分配操作 `KSV5`,完成费用的实际转移。 #### 迭代 (Iterative Distribution/Allocation) 迭代是一种特殊的分配分摊模式,在该模式下,系统会反复运行分配分摊逻辑,直到源成本中心的所有费用都被完全分配分摊出去为止。这意味着每次迭代都会减少剩余未分配的金额,直至达到零余额状态。 特点包括: - **彻底性**:确保所有费用都得到妥善处理,无残留。 - **复杂度较高**:可能需要多次计算才能满足精确匹配需求。 例如,在创建分配循环时选择“迭代”选项,则表示希望系统自动调整每一轮分配后的残余量,最终使总金额归零[^3]。 #### 累计 (Accumulative Distribution/Allocation) 相比之下,“累计”仅是一次性的简单比例划分行为,它不会考虑之前已发生的任何交易记录或者后续还需继续处理的部分;也就是说,即使存在尚未解决完全部份额的情况也不会再额外补充新的轮次来进行修正——即只做单步动作而非连续流程。 主要区别总结如下表: | 特性 | 迭代 | 累积 | |------------|-----------------------------------|--------------------------------| | 处理次数 | 可能多次 | 单次 | | 费用覆盖范围 | 完全覆盖整个初始总额 | 按当前设定一次性分割 | #### 功能配置与使用建议 当企业内部管理要求严格控制各环节资金流向清晰可见,并且追求精细化管理水平提升的时候可以选择采用“迭代”的方式进行更精准细致的资金调配方案设计;而对于那些只需要粗线条把握整体趋势变化即可满足日常运营管理所需的企业来说,“累积”则显得更为简便快捷一些[^4]。 ```python # 示例代码展示简单的迭代算法模拟 def iterative_allocation(total_cost, ratios): remaining = total_cost allocated = [] while abs(remaining) > 0.01: # 设置精度阈值 current_allocations = [remaining * r for r in ratios] sum_current = sum(current_allocations) adjustment_factor = remaining / sum_current if sum_current != 0 else 1 adjusted_allocations = [a * adjustment_factor for a in current_allocations] allocated.append(adjusted_allocations) remaining -= sum(adjusted_allocations) return allocated ratios_example = [0.3, 0.7] total_cost_example = 1000 result = iterative_allocation(total_cost_example, ratios_example) print(result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值