积分极限定理+勒贝格控制收敛定理+高数

在处理积分与极限的交换顺序问题上,勒贝格积分比黎曼积分要求的条件要弱的多(并且条件更易于验证)

积分与极限交换顺序的定理:

控制收敛定理

  1. { f n ( x ) } 为 E 上 的 一 列 可 测 函 数 \{ f_n(x)\}为E上的一列可测函数 {fn(x)}E
  2. F ( x ) 为 E 上 的 可 积 函 数 , 且 ∣ f n ( x ) ∣ ≤ F ( x ) a . e . 于 E ( 在 E 上 a l m o s t . e v e r y . 成 立 ) , N = 1 , 2 … … F(x)为E上的可积函数,且|f_n(x)|\leq F(x) a.e.于E(在E上almost.every. 成立),\\N=1,2…… F(x)Efn(x)F(x)a.e.EEalmost.every.N=1,2
  3. f n ( x ) 依 测 度 收 敛 到 f ( x ) f_n(x)依测度收敛到f(x) fn(x)f(x)
    则 f ( x ) 在 E 上 可 积 , 并 且 lim ⁡ n → + ∞ ∫ E f n ( x ) d x = ∫ E f ( x ) d x 则f(x)在E上可积,并且\lim _{n\rightarrow +\infty} \int_{E}f_n(x)dx=\int_{E}f(x)dx f(x)En+limEfn(x)dx=Ef(x)dx

推论:有界收敛定理

(也就是

除了在E的一个测度任意小的子集上 (a.e.),函数列f(x)一致收敛于f(x)

{意思是对Ve>0,存在一个正整数N使得(f(x)-f(x)1<ε对一切x和一切k≥N成立。直观地讲,如果将f(x)放入围绕它的 ε-通道内,则f(x)最终也会落入通道中。}
)

f n 一 致 有 界 ( ∣ f n ( x ) ∣ ≤ M ) , 则 极 限 和 积 分 可 以 换 序 f_n一致有界(|f_n(x)|\leq M),则极限和积分可以换序 fn(fn(x)M)

在这里插入图片描述

积分极限定理的应用:
设 f ( x ) 在 [ 0 , 1 ] 上 连 续 , 则 lim ⁡ n → + ∞ ∫ 0 1 x n f ( x ) d x = ? 积 分 和 极 限 交 换 顺 序 x n 的 极 限 在 [ 0 , 1 ) 为 0 所 以 上 式 = 0 ( 还 可 利 用 夹 逼 定 理 证 明 : 0 ≤ ∣ ∫ 0 1 x n f ( x ) d x ∣ ≤ ∫ 0 1 x n ∣ f ( x ) ∣ d x ≤ M ∫ 0 1 x n d x = M n + 1 → 0 ) 设f(x)在[0,1]上连续,则\lim_{n\rightarrow +\infty }\int_0^1 x^n f(x)dx=?\\ 积分和极限交换顺序x^n的极限在[0,1)为0\\ 所以上式=0 (还可利用夹逼定理证明:\\ 0\leq |\int_0^1 x^n f(x)dx|\leq \int_0^1 x^n |f(x)|dx\leq M\int_0^1 x^n dx=\frac{M}{n+1}\rightarrow 0) f(x)[0,1]n+lim01xnf(x)dx=?xn[0,1)0=0001xnf(x)dx01xnf(x)dxM01xndx=n+1M0

(

除了在E的一个测度任意小的子集上 (a.e.),函数列f(x)一致收敛于f(x)

{意思是对Ve>0,存在一个正整数N使得(f(x)-f(x)1<ε对一切x和一切k≥N成立。直观地讲,如果将f(x)放入围绕它的 ε-通道内,则f(x)最终也会落入通道中。}
)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值