《视觉SLAM十四讲》中SE(3)指数映射和左雅克比矩阵的推导

高博的书上给出了 S O ( 3 ) SO(3) SO(3)的指数映射推导,但对于 S E ( 3 ) SE(3) SE(3),仅介绍了结论,没有给出详细推导。
最近在补李群和李代数基础,就当做加深理解,自己推一遍。


ξ = [ ρ , ϕ ] T ∈ s e ( 3 ) \boldsymbol{\xi} = \left[ \rho , \phi\right] ^T \in \mathfrak{se}(3) ξ=[ρ,ϕ]Tse(3),它的指数映射为:
exp ⁡ ( ξ ∧ ) = [ ∑ n = 0 ∞ 1 n ! ( ϕ ∧ ) n ∑ n = 0 ∞ 1 ( n + 1 ) ! ( ϕ ∧ ) n ρ 0 T 1 ] \exp(\mathfrak{\boldsymbol{\xi}}^{\wedge}) = \begin{bmatrix} \sum\limits_{n=0}^{\infty} \frac{1}{n!}(\phi^{\wedge})^n & \sum\limits_{n=0}^{\infty} \frac{1}{(n+1)!}(\phi^{\wedge})^n \boldsymbol{\rho} \\ \boldsymbol{0}^T & 1 \end{bmatrix} exp(ξ)=n=0n!1(ϕ)n0Tn=0(n+1)!1(ϕ)nρ1
ρ = θ a \boldsymbol{\rho}=\theta \boldsymbol{a} ρ=θa,那么:
∑ n = 0 ∞ 1 ( n + 1 ) ! ( ϕ ∧ ) n = sin ⁡ θ θ I + ( 1 − sin ⁡ θ θ ) a a T + 1 − cos ⁡ θ θ a ∧ = J . \sum\limits_{n=0}^{\infty} \frac{1}{(n+1)!}(\phi ^{\wedge})^n = \frac{\sin \theta}{\theta}I + (1- \frac{\sin \theta}{\theta})\boldsymbol{a}\boldsymbol{a}^T + \frac{1-\cos \theta}{\theta} \boldsymbol{a}^{\wedge} = \boldsymbol{J}. n=0(n+1)!1(ϕ)n=θsinθI+(1θsinθ)aaT+θ1cosθa=J.


下面证明:

已知 ξ ∧ = [ ϕ ∧ ρ 0 T , 0 ] \boldsymbol{{\xi}}^{\wedge} = \begin{bmatrix} \boldsymbol{\phi}^{\wedge} & \boldsymbol{\rho} \\ \boldsymbol{0}^{T}, & 0 \end{bmatrix} ξ=[ϕ0T,ρ0]

那么
exp ⁡ ( ξ ∧ ) = ∑ n = 0 ∞ 1 n ! [ ϕ ∧ ρ 0 T , 0 ] n = I + ∑ n = 1 ∞ 1 n ! [ θ a ∧ ρ 0 T , 0 ] n = [ I 0 0 1 ] + ∑ n = 1 ∞ 1 n ! [ ( θ a ∧ ) n ( θ a ∧ ) n − 1 ρ 0 T , 0 ] = [ ∑ n = 0 ∞ 1 n ! ( θ a ∧ ) n ∑ n = 1 ∞ 1 n ! ( θ a ∧ ) n − 1 ρ 0 T , 1 ] \begin{aligned} \exp(\boldsymbol{{\xi}}^{\wedge}) &= \sum\limits_{n=0}^{\infty} \frac{1}{n!}\begin{bmatrix} \boldsymbol{\phi}^{\wedge} & \boldsymbol{\rho} \\ \boldsymbol{0}^{T}, & 0 \end{bmatrix}^n \\ &= \boldsymbol{I} + \sum\limits_{n=1}^{\infty} \frac{1}{n!}\begin{bmatrix} {\theta}\boldsymbol{a}^{\wedge} & \boldsymbol{\rho} \\ \boldsymbol{0}^{T}, & 0 \end{bmatrix}^n \\ &= \begin{bmatrix} \boldsymbol{I} & \boldsymbol{0} \\ 0 & 1 \end{bmatrix} + \sum\limits_{n=1}^{\infty} \frac{1}{n!}\begin{bmatrix} (\theta\boldsymbol{a}^{\wedge})^n & (\theta\boldsymbol{a}^{\wedge})^{n-1 }\boldsymbol{\rho} \\ \boldsymbol{0}^{T}, & 0 \end{bmatrix} \\ &= \begin{bmatrix} \sum\limits_{n=0}^{\infty} \frac{1}{n!}(\theta\boldsymbol{a}^{\wedge})^n & \sum\limits_{n=1}^{\infty} \frac{1}{n!}(\theta\boldsymbol{a}^{\wedge})^{n-1 }\boldsymbol{\rho} \\ \boldsymbol{0}^{T}, & 1 \end{bmatrix} \end{aligned} exp(ξ)=n=0n!1[ϕ0T,ρ0]n=I+n=1n!1[θa0T,ρ0]n=[I001]+n=1n!1[(θa)n0T,(θa)n1ρ0]=n=0n!1(θa)n0T,n=1n!1(θa)n1ρ1

现在令 n = n − 1 n=n-1 n=n1,那么 n = n + 1 n=n+1 n=n+1(做一步替换变量),带入上式右上角的一项,得
exp ⁡ ( ξ ∧ ) = [ ∑ n = 0 ∞ 1 n ! ( θ a ∧ ) n ∑ n = 0 ∞ 1 ( n + 1 ) ! ( θ a ∧ ) n ρ 0 T , 1 ] \exp(\boldsymbol{\xi}^\wedge)= \begin{bmatrix} \sum\limits_{n=0}^{\infty} \frac{1}{n!}(\theta\boldsymbol{a}^{\wedge})^{n} & \sum\limits_{n=0}^{\infty} \frac{1}{(n+1)!}(\theta\boldsymbol{a}^{\wedge})^{n}\boldsymbol{\rho} \\ \boldsymbol{0}^{T}, & 1 \end{bmatrix} exp(ξ)=n=0n!1(θa)n0T,n=0(n+1)!1(θa)nρ1

S E ( 3 ) SE(3) SE(3)的指数映射形式推导完毕。下面推导左雅克比的形式

ρ = θ a \boldsymbol{\rho} = \theta \boldsymbol{a} ρ=θa

∥ a ∥ = 1 \Vert \boldsymbol{a} \Vert = 1 a=1时,已知可以用来化简的结论:
a ∧ a ∧ = a a T − I a ∧ a ∧ a ∧ = a ∧ ( a T − I ) = − a ∧ \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge} = \boldsymbol{a}\boldsymbol{a}^T - \boldsymbol{I} \\ \boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge}\boldsymbol{a}^{\wedge} = \boldsymbol{a}^{\wedge}(\boldsymbol{a}^T - \boldsymbol{I}) = -\boldsymbol{a}^{\wedge} aa=aaTIaaa=a(aTI)=a
进而
J = ∑ n = 0 ∞ 1 ( n + 1 ) ! ( θ a ∧ ) n = I + 1 2 ! ( θ a ∧ ) + 1 3 ! ( θ a ∧ ) 2 + 1 4 ! ( θ a ∧ ) 3 + ⋯ + 1 ( n + 1 ) ! ( θ a ∧ ) n = I + 1 2 ! ( θ a ∧ ) + 1 3 ! ( θ a ∧ ) 2 − 1 4 ! θ 3 ( a ∧ ) − 1 5 ! θ 4 ( a ∧ ) 2 + 1 6 ! θ 5 ( a ∧ ) − 1 7 ! θ 7 ( a ∧ ) 2 + ⋯ = 1 θ ( 1 2 ! θ 2 − 1 4 ! θ 4 + ⋯   ) a ∧ + 1 θ ( 1 3 ! θ 3 − 1 5 ! θ 5 + ⋯   ) ( a ∧ ) 2 + I \begin{aligned} \boldsymbol{J} &= \sum\limits_{n=0}^{\infty} \frac{1}{(n+1)!}(\theta \boldsymbol{a}^{\wedge})^n \\ &= \boldsymbol{I} + \frac{1}{2!}(\theta \boldsymbol{a}^{\wedge}) + \frac{1}{3!}(\theta \boldsymbol{a}^{\wedge})^2 + \frac{1}{4!}(\theta \boldsymbol{a}^{\wedge})^3 + \cdots + \frac{1}{(n+1)!}(\theta \boldsymbol{a}^{\wedge})^n \\ &=\boldsymbol{I} + \frac{1}{2!}(\theta \boldsymbol{a}^{\wedge}) + \frac{1}{3!}(\theta \boldsymbol{a}^{\wedge})^2 - \frac{1}{4!}\theta^3 (\boldsymbol{a}^{\wedge}) - \frac{1}{5!}\theta^4 (\boldsymbol{a}^{\wedge})^2 + \frac{1}{6!}\theta^5(\boldsymbol{a}^{\wedge}) - \frac{1}{7!}\theta^7 (\boldsymbol{a}^{\wedge})^2 +\cdots \\ &= \frac{1}{\theta}(\frac{1}{2!}\theta^2 - \frac{1}{4!}\theta^4 + \cdots)\boldsymbol{a}^{\wedge} + \frac{1}{\theta}(\frac{1}{3!}\theta^3 - \frac{1}{5!}\theta^5 + \cdots)(\boldsymbol{a}^{\wedge})^2 + \boldsymbol{I} \end{aligned} J=n=0(n+1)!1(θa)n=I+2!1(θa)+3!1(θa)2+4!1(θa)3++(n+1)!1(θa)n=I+2!1(θa)+3!1(θa)24!1θ3(a)5!1θ4(a)2+6!1θ5(a)7!1θ7(a)2+=θ1(2!1θ24!1θ4+)a+θ1(3!1θ35!1θ5+)(a)2+I
sin ⁡ θ \sin\theta sinθ cos ⁡ θ \cos\theta cosθ的泰勒展开公式
sin ⁡ θ = θ − 1 3 ! θ 3 + 1 5 ! θ 5 − 1 7 ! θ 7 + ⋯ cos ⁡ θ = 1 − 1 2 ! θ 2 + 1 4 ! θ 4 − 1 6 ! θ 6 + ⋯ \begin{aligned} \sin\theta &= \theta - \frac{1}{3!}\theta^3 + \frac{1}{5!}\theta^5 - \frac{1}{7!}\theta^7+ \cdots \\ \cos\theta &= 1 - \frac{1}{2!}\theta^2 + \frac{1}{4!}\theta^4 - \frac{1}{6!}\theta^6+ \cdots \end{aligned} sinθcosθ=θ3!1θ3+5!1θ57!1θ7+=12!1θ2+4!1θ46!1θ6+
J \boldsymbol{J} J可进一步化简为
J = 1 θ ( 1 − cos ⁡ θ ) ( a ∧ ) + θ − sin ⁡ θ θ ( a a T − I ) + I = sin ⁡ θ θ I + ( 1 − sin ⁡ θ θ ) a a T + 1 − cos ⁡ θ θ a ∧ \begin{aligned} \boldsymbol{J} &= \frac{1}{\theta}(1- \cos\theta)(\boldsymbol{a}^{\wedge}) + \frac{\theta- \sin \theta}{\theta}( \boldsymbol{a}\boldsymbol{a}^T - \boldsymbol{I}) + \boldsymbol{I} \\ &= \frac{\sin \theta}{\theta}I + (1- \frac{\sin \theta}{\theta})\boldsymbol{a}\boldsymbol{a}^T + \frac{1-\cos \theta}{\theta} \boldsymbol{a}^{\wedge} \end{aligned} J=θ1(1cosθ)(a)+θθsinθ(aaTI)+I=θsinθI+(1θsinθ)aaT+θ1cosθa
左雅克比矩阵的形式推导完毕。

参考:https://blog.csdn.net/zengxyuyu/article/details/105646751#commentBox

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值