李群理论笔记1:特殊欧式群SE(3)和刚体运动描述

1.引言:我们为什么要用到特殊欧式群SE(3)描述刚体运动?

我们知道在欧式三维空间中一个物体没有约束有三个旋转自由度和三个平动自由度。为了描述一个可动构件相对另一个固定管构件能够有哪些自由度,本质就是寻找可动构件上附带的动坐标系想固定构件上附带的定坐标系之间的姿态变换。这时候就可以引入特殊欧式群 S E ( 3 ) SE(3) SE(3)进行统一的描述,利用群理论描述运动学就变得统一和简化,它具有一套规整的计算规则,可以非常方便直观地利用矩阵方式计算两个坐标系之间的相对位置和姿态。

2.特殊欧式群SE(3)的定义

特殊欧式群 S E ( 3 ) SE(3) SE(3)(S是special的意思,所以是特殊欧式群)是线性矩阵群 G L ( 4 , R ) = { R 4 × 4 ∣ d e t ( R ) ≠ 0 } GL(4,\R)=\{\R^{4\times4}|det(R)\neq0\} GL(4,R)={R4×4det(R)=0}的封闭子群,作为矩阵李群, S E ( 3 ) SE(3) SE(3)首先代表一种齐次坐标变换,可以代表某种刚体运动的集合,假设在 R 3 \R^3 R3欧式空间中所有的点坐标都是用齐次坐标表示的,刚体运动可以表示为一个动坐标系 M M M相对一个定坐标系 F F F的相对位置和姿态的变化,而 S E ( 3 ) SE(3) SE(3)可以表示为

S E ( 3 ) = { [ R P 0 1 ]   ∣   P ∈ R 3 , R ∈ S O ( 3 ) } SE(3)=\left\{ \begin{bmatrix} \mathbf{R} & \mathbf{P}\\ \mathbf{0} & 1 \end{bmatrix}\,|\,\mathbf{P}\in\R^3,\mathbf{R}\in SO(3)\right\} SE(3)={[R0P1]PR3,RSO(3)}

式中的 P \mathbf{P} P表示动坐标系 M M M的原点相对于定坐标系 F F F原点的相对位置,而 R \mathbf{R} R表示动坐标系 M M M相对定坐标系 F F F的相对姿态。 R \mathbf{R} R称为旋转子群,其数学定义为:

S O ( 3 ) = { R ∈ R 3 × 3   ∣   R T R = I , d e t ( R ) = 1 } SO(3)=\left\{\mathbf{R}\in\R^{3\times3}\,|\,\mathbf{R}^T\mathbf{R}=\mathbf{I},det(\mathbf{R})=1\right\} SO(3)={RR3×3RTR=I,det(R)=1}

3. S E ( 3 ) SE(3) SE(3)子群的齐次矩阵表示及其释义

3.1 T ( v ) \mathbf{T}(\mathbf{v}) T(v):沿方向 v \mathbf{v} v的平移

T ( v ) = { [ I a v 0 1 ] ∣   a ∈ R } \mathbf{T}(\mathbf{v})=\left\{ \begin{bmatrix} \mathbf{I} & a\mathbf{v}\\ \mathbf{0} & 1 \end{bmatrix}|\,a\in\R\right\} T(v)={[I0av1]aR}

表示沿方向 v \mathbf{v} v的平移

3.2 R ( P , ω ) \mathbf{R}(\mathbf{P},\mathbf{\omega}) R(P,ω):沿轴 ( P , ω ) (\mathbf{P},\mathbf{\omega}) (P,ω)转动

R ( P , ω ) = { [ e ω ^ θ ( I − e ω ^ θ ) P 0 1 ] ∣   θ ∈ [ 0 , 2 π ] , P ∈ R 3 } \mathbf{R}(\mathbf{P},\mathbf{\omega})=\left\{ \begin{bmatrix} e^{\hat{\mathbf{\omega}}\theta} & (\mathbf{I}-e^{\hat{\mathbf{\omega}}\theta})\mathbf{P}\\ \mathbf{0} & 1 \end{bmatrix}|\,\theta\in[0,2\pi],\mathbf{P}\in\R^3\right\} R(P,ω)={[eω^θ0(Ieω^θ)P1]θ[0,2π],PR3}

表示沿轴 ( P , ω ) (\mathbf{P},\mathbf{\omega}) (P,ω)转动。

3.3 H ρ ( P , ω ) \mathbf{H}_\rho(\mathbf{P},\mathbf{\omega}) Hρ(P,ω):沿轴 ( P , ω ) (\mathbf{P},\mathbf{\omega}) (P,ω)且节距为 ρ \rho ρ的螺旋转动

H ρ ( P , ω ) = { [ e ω ^ θ ( I − e ω ^ θ ) P + ρ ω θ 0 1 ] ∣   θ ∈ [ 0 , 2 π ] , P ∈ R 3 } \mathbf{H}_\rho(\mathbf{P},\mathbf{\omega})=\left\{ \begin{bmatrix} e^{\hat{\mathbf{\omega}}\theta} & (\mathbf{I}-e^{\hat{\mathbf{\omega}}\theta})\mathbf{P}+\rho\mathbf{\omega}\theta\\ \mathbf{0} & 1 \end{bmatrix}|\,\theta\in[0,2\pi],\mathbf{P}\in\R^3\right\} Hρ(P,ω)={[eω^θ0(Ieω^θ)P+ρωθ1]θ[0,2π],PR3}

表示沿轴 ( P , ω ) (\mathbf{P},\mathbf{\omega}) (P,ω)且节距为 ρ \rho ρ的螺旋转动。

3.4 T 2 ( ω ) \mathbf{T}_2(\mathbf{\omega}) T2(ω):垂直于 ω \mathbf{\omega} ω的平面移动

T 2 ( ω ) = { [ I a x + b y 0 1 ] ∣   a , b ∈ R } \mathbf{T}_2(\mathbf{\omega})=\left\{ \begin{bmatrix} \mathbf{I} & a\mathbf{x}+b\mathbf{y}\\ \mathbf{0} & 1 \end{bmatrix}|\,a,b\in\R\right\} T2(ω)={[I0ax+by1]a,bR}

这里 x \mathbf{x} x y \mathbf{y} y应该是垂直于 ω \mathbf{\omega} ω的平面的任意两个不平行的矢量。

表示垂直于 ω \mathbf{\omega} ω的平面移动

3.5 C ( P , ω ) \mathbf{C}(\mathbf{P},\mathbf{\omega}) C(P,ω):沿轴 ( P , ω ) (\mathbf{P},\mathbf{\omega}) (P,ω)的圆柱运动

C ( P , ω ) = { [ e ω ^ θ ( I − e ω ^ θ ) P + a ω 0 1 ] ∣   θ ∈ [ 0 , 2 π ] , P ∈ R 3 , a ∈ R } \mathbf{C}(\mathbf{P},\mathbf{\omega})=\left\{ \begin{bmatrix} e^{\hat{\mathbf{\omega}}\theta} & (\mathbf{I}-e^{\hat{\mathbf{\omega}}\theta})\mathbf{P}+a\mathbf{\omega}\\ \mathbf{0} & 1 \end{bmatrix}|\,\theta\in[0,2\pi],\mathbf{P}\in\R^3,a\in\R\right\} C(P,ω)={[eω^θ0(Ieω^θ)P+1]θ[0,2π],PR3,aR}

表示沿轴 ( P , ω ) (\mathbf{P},\mathbf{\omega}) (P,ω)的圆柱运动。

3.6 T ( 3 ) \mathbf{T}(3) T(3):三维移动

T ( 3 ) = { [ I Q 0 1 ] ∣   Q ∈ R 3 } \mathbf{T}(3)=\left\{ \begin{bmatrix} \mathbf{I} & \mathbf{Q}\\ \mathbf{0} & 1 \end{bmatrix}|\,\mathbf{Q}\in\R^3\right\} T(3)={[I0Q1]QR3}

表示三维移动。

3.7 G ( ω ) \mathbf{G}(\mathbf{\omega}) G(ω):垂直于 ω \mathbf{\omega} ω的平面运动

G ( ω ) = { [ e ω ^ θ a x + b y 0 1 ] ∣   θ ∈ [ 0 , 2 π ] , a , b ∈ R } \mathbf{G}(\mathbf{\omega})=\left\{ \begin{bmatrix} e^{\hat{\mathbf{\omega}}\theta} & a\mathbf{x}+b\mathbf{y}\\ \mathbf{0} & 1 \end{bmatrix}|\,\theta\in[0,2\pi],a,b\in\R\right\} G(ω)={[eω^θ0ax+by1]θ[0,2π],a,bR}

这里 x \mathbf{x} x y \mathbf{y} y应该是垂直于 ω \mathbf{\omega} ω的平面的任意两个不平行的矢量。

表示垂直于 ω \mathbf{\omega} ω的平面运动。

3.8 S ( P ) \mathbf{S}(\mathbf{P}) S(P):绕点 P \mathbf{P} P的三维转动

S ( P ) = { [ R ( I − R ) P 0 1 ] ∣   R ∈ S O ( 3 ) , P ∈ R 3 } \mathbf{S}(\mathbf{P})=\left\{ \begin{bmatrix} \mathbf{R} & (\mathbf{I}-\mathbf{R})\mathbf{P}\\ \mathbf{0} & 1 \end{bmatrix}|\,\mathbf{R}\in SO(3), \mathbf{P}\in\R^3\right\} S(P)={[R0(IR)P1]RSO(3),PR3}

表示绕点 P \mathbf{P} P的三维转动。

3.9 Y ρ ( ω ) \mathbf{Y}_\rho(\mathbf{\omega}) Yρ(ω):垂直于 ω \mathbf{\omega} ω的平面且节距为 ρ \rho ρ的螺旋运动

Y ρ ( ω ) = { [ e ω ^ θ a x + b y + ρ ω θ 0 1 ] ∣   θ ∈ [ 0 , 2 π ] , a , b ∈ R } \mathbf{Y}_\rho(\mathbf{\omega})=\left\{ \begin{bmatrix} e^{\hat{\mathbf{\omega}}\theta} & a\mathbf{x}+b\mathbf{y}+\rho\mathbf{\omega}\theta\\ \mathbf{0} & 1 \end{bmatrix}|\,\theta\in[0,2\pi],a,b\in\R\right\} Yρ(ω)={[eω^θ0ax+by+ρωθ1]θ[0,2π],a,bR}

表示垂直于 ω \mathbf{\omega} ω的平面且节距为 ρ \rho ρ的螺旋运动

3.10 X ( ω ) \mathbf{X}(\mathbf{\omega}) X(ω):三维移动和 ω \mathbf{\omega} ω方向转动

X ( ω ) = { [ e ω ^ θ Q 0 1 ] ∣   θ ∈ [ 0 , 2 π ] , Q ∈ R 3 } \mathbf{X}(\mathbf{\omega})=\left\{ \begin{bmatrix} e^{\hat{\mathbf{\omega}}\theta}& \mathbf{Q}\\ \mathbf{0} & 1 \end{bmatrix}|\,\theta\in[0,2\pi],\mathbf{Q}\in\R^3\right\} X(ω)={[eω^θ0Q1]θ[0,2π],QR3}

表示三维移动和 ω \mathbf{\omega} ω方向转动。

4.其他

在刚体运动的集合中。除了存在具备群结构的运动之外,还存在众多不封闭的非群结构的运动,比如五轴机床的五自由度运动。两转动副组成的运动链的末端运动,万向节运动等等,都不是李群运动,这些运动的特点是不能沿着固定坐标轴运动,因此也称为不封闭的非群运动。数学上这类不具备群结构的运动可以用 S E ( 3 ) SE(3) SE(3)的规则子流形来描述,这也是机构学界的研究热点和难点。

参考资料

[1]邓宗全.空间折展机构设计[M].第一版.哈尔滨工业大学出版社.2013:32-33

### 回答1: 微分流形与李群是数学中两个重要且密切相关的概念。 微分流形是一种具有局部欧几里得空间结构的抽象空间。在微分流形中,每个点都有一个切空间,切空间由该点上的切向量组成。微分流形的定义涉及到一些光滑函数的概念,如光滑映射和光滑流形上的曲线。微分流形的研究使得我们能够将许多问题从局部拓展到全局,从而更好地理解这些问题的性质。 而李群则是一种具有结构和光滑流形结构的特殊对象。李群可以看作是实数轴上的平移和旋转的推广,它们是一类对称性极高的对象。李群的研究在物理学、几何学、数学物理学等领域有着广泛的应用。李群具有许多重要的性质,如乘法可逆性、左右平移不变性等,这使得它们成为研究变换和对称性的理想工具。 《微分流形与李群基础》是一本介绍微分流形和李群理论基础的教材或参考书籍。这本书通常会介绍微分流形和李群的基本定义、性质以及与其相关的一些重要定理和应用。它不仅向读者展示了这两个概念的数学意义和美妙之处,还帮助读者理解它们在各个领域中的应用。 通过学习《微分流形与李群基础》,读者可以深入了解微分流形和李群的基本理论,掌握它们的基本性质和重要定理,以及它们在几何学、物理学和其他应用领域中的具体应用。对于那些想要从事相关领域的研究的人来说,这本书是一个很好的入门教材。 ### 回答2: 微分流形与李群是现代数学的两个重要分支,它们在许多领域有着广泛的应用,包括物理学、计算机科学和工程学等。 微分流形是一种广义的曲面,它可以在其中定义切空间、切向量以及相关的微分结构。微分流形的最基本的例子就是欧几里得空间中的平面和曲线,但它们的定义可以扩展到更一般的情况。微分流形的基础知识包括切空间、切向量、切丛以及联络等概念,这些概念为我们研究微分方程、测度论和外微分等提供了重要的工具。 李群是一种具有结构和光滑流形结构的数学对象。李群主要研究上的微分结构及其相关性质,它在对称性、变换和李代数的研究中扮演着重要的角色。李群的基础知识包括表示、李代数、作用以及李群的结构等,这些知识可以应用于物理学中的对称性研究、机器学习中的降维等问题。 对于初学者来说,学习微分流形和李群需要一些基础的数学知识,比如线性代数和实分析。一本好的PDF教材可以作为初学者学习这些知识的参考书,它可以提供清晰的定义、详细的推导和有趣的例题。同时,应该选择那些结构清晰、内容综合的教材,可以从浅显到深入地介绍微分流形和李群的基本概念以及它们的应用。 总而言之,微分流形与李群是现代数学中重要的研究领域,学习它们需要一定的数学基础。选择一本结构清晰、内容全面的PDF教材是初学者掌握这些知识的好方法。通过深入学习微分流形与李群,我们可以更好地理解和应用数学在实际问题中的价值。 ### 回答3: 微分流形与李群是数学中重要的两个概念,它们在物理学、工程学、计算机科学等领域都有广泛的应用。微分流形是空间的一种特殊结构,可以从局部类似于欧几里得空间的小区域逐渐拼接起来构成整个空间。微分流形的基础理论包括切空间、切丛、流形上的切矢量场等。微分流形上的微积分运算可以一般化到一般流形上,不仅包括了传统的矢量微积分,还有微分形式、外微分、李导数等。 李群是具有结构且同时是光滑流形的数学对象。其结构使得李群可以进行运算,而光滑流形结构使得李群具有光滑性质。李群在几何学、物理学和控制论中都有广泛应用。例如,旋转和平移李群的典型例子,它们在刚体运动和机器人运动控制中起着重要作用。 微分流形与李群之间存在着紧密的联系。每个李群都可以看作是一个微分流形,而每个微分流形上的某些特殊结构也可以形成李群。这种对应关系可以让我们在处理李群和微分流形时同时运用它们的相应理论和工具,从而更加深入地研究它们的性质和应用。 《微分流形与李群基础》是一本介绍微分流形与李群基础理论的书籍。它系统地介绍了微分流形和李群的定义、性质、结构和重要定理。读者可以通过学习这本书,了解微分流形和李群的基本概念、理论框架和应用方法。这本书的内容一般较为抽象和理论化,因此需要有一定的数学基础,如线性代数、多变量微积分和拓扑学等。对于那些希望深入了解微分流形和李群,或者通过它们解决实际问题的读者来说,《微分流形与李群基础》是一本不可或缺的参考书。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值