复数和四元数的几何意义

将平面看成是复数空间平面时,绕原点O旋转 θ \theta θ角度等价于乘上下面的数
e i θ = cos ⁡ ( θ ) + sin ⁡ ( θ ) e^{i\theta} = \cos (\theta) + \sin (\theta) eiθ=cos(θ)+sin(θ)

这些数字的集合构成一个单位圆或者称为1-d球体
S 1 = { z : ∣ z ∣ = 1 } S^1 = \{z:|z| = 1\} S1={z:z=1}
其中 S 1 S^1 S1不仅是一个几何实体,在复数乘法下也构成一个代数结构,称之为。其乘法运算 e i θ i ⋅ e i θ 2 = e i ( θ 1 + θ 2 ) e^{i\theta_i}\cdot e^{i \theta_2} = e^{i(\theta_1+\theta_2)} eiθieiθ2=ei(θ1+θ2),逆运算 ( e i θ ) − 1 = e i ( − θ ) (e^{i \theta})^{-1} = e^{i (-\theta)} (eiθ)1=ei(θ)光滑的依赖于参数 θ \theta θ。这种光滑的性质,使得 S 1 S^1 S1被称为李群(Lie group)

然而,在某些方面 S 1 S^1 S1过于特殊,无法很好的说明李理论。 S 1 S^1 S1群是一维的并满足交换律(复数乘法满足交换律),这些复数性质使得其在李理论中过于特殊。

为了获得更有意义的李群,我们定义四维的代数四元数,以及在四维空间中的3维球体 S 3 S^3 S3。在四元数的乘法下, S 3 S^3 S3构成一个和空间旋转相关的非交换李群记为 S U ( 2 ) SU(2) SU(2)

平面上的旋转

如下图所示,在 R 2 R^2 R2空间中绕原点 O O O旋转角度 θ \theta θ可以认为是一个线性变换 R θ R_{\theta} Rθ,将基向量 ( 0 , 1 ) (0,1) (0,1) ( 1 , 0 ) (1,0) (1,0)变换到 ( cos ⁡ θ , sin ⁡ θ ) (\cos \theta ,\sin \theta) (cosθ,sinθ) ( − sin ⁡ θ , cos ⁡ θ ) (-\sin \theta,\cos \theta) (sinθ,cosθ)
在这里插入图片描述

对于一般的向量可以看成基向量的线性组合
( x , y ) = x ( 1 , 0 ) + y ( 0 , 1 ) → ( x cos ⁡ θ − y sin ⁡ θ , x sin ⁡ θ + y cos ⁡ θ ) (x,y) = x(1,0) + y(0,1) \to (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta) (x,y)=x(1,0)+y(0,1)(xcosθysinθ,xsinθ+ycosθ)
因此,旋转变换可以用如下的矩阵表达
( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) \left(\begin{matrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{matrix}\right) (cosθsinθsinθcosθ)
我们将其该矩阵为 R θ R_{\theta} Rθ。对于点 ( x , y ) (x,y) (x,y)的旋转变换等价于列向量 ( x y ) \left(\begin{matrix} x \\ y \end{matrix}\right) (xy)左乘矩阵 R θ R_{\theta} Rθ
R θ ( x y ) = ( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) ( x y ) = ( x cos ⁡ θ − y sin ⁡ θ x sin ⁡ θ + y cos ⁡ θ ) R_{\theta} \left(\begin{matrix} x \\ y \end{matrix}\right) = \left(\begin{matrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{matrix}\right) \left(\begin{matrix} x \\ y \end{matrix}\right) = \left(\begin{matrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{matrix}\right) Rθ(xy)=(cosθsinθsinθcosθ)(xy)=(xcosθysinθxsinθ+ycosθ)
由于在左侧乘上矩阵,因此先乘上 R ϕ R_{\phi} Rϕ然后乘上 R θ R_{\theta} Rθ等价于乘上它们的乘积矩阵 R ϕ R θ R_{\phi} R_{\theta} RϕRθ

因此我们可以使用矩阵的连乘运算表达几何上连续的旋转操作。本书的主要目的在于阐明如下观点,能通过矩阵群的表达方式来研究线性变换群。目前你可以将矩阵群看作包含矩阵 A A A B B B,矩阵 A B AB AB,和矩阵 A − 1 A^{-1} A1, B − 1 B^{-1} B1的一个集合。后续内容中(在7.2节)将介绍额外的条件保证矩阵群的光滑性,目前我们不需要考虑光滑性的准确含义。

对任意角度 θ \theta θ的矩阵 R θ R_{\theta} Rθ构成了所谓的特殊正交群 S O ( 3 ) SO(3) SO(3),将旋转称为正交变换的原因我们将在第三章中提及,并将旋转的思想拓展到 R n R^n Rn空间中,并为每一维空间定义一个群 S O ( n ) SO(n) SO(n)。在本章我们主要关注 S O ( 2 ) SO(2) SO(2) S O ( 3 ) SO(3) SO(3),他们在某些方面是有代表意义的。

对于 R 2 R^2 R2空间中的一个旋转,可以用一个复数来表达
z θ = cos ⁡ θ + i sin ⁡ θ z_{\theta} = \cos \theta + i \sin \theta zθ=cosθ+isinθ
因对对任意一个点 ( x , y ) = x + i y (x,y) = x+iy (x,y)=x+iy乘上 z θ z_{\theta} zθ能够得到:
z θ ( x + i y ) = ( cos ⁡ θ + i sin ⁡ θ ) ( x + i y ) = ( x cos ⁡ θ − y sin ⁡ θ , x sin ⁡ θ + y cos ⁡ θ ) \begin{aligned} z_{\theta}(x + iy) &= (\cos \theta + i \sin \theta)(x + iy) \\ &= (x \cos \theta - y \sin \theta,x \sin \theta + y \cos \theta) \end{aligned} zθ(x+iy)=(cosθ+isinθ)(x+iy)=(xcosθysinθ,xsinθ+ycosθ)
其结果等于对点 ( x , y ) (x,y) (x,y)旋转角度 θ \theta θ。普通的乘法 z θ z ϕ z_{\theta}z_{\phi} zθzϕ就表达了 R θ R_{\theta} Rθ R ϕ R_{\phi} Rϕ的组合。
R 3 R^3 R3空间中的旋转能够被稍微复杂一点的“四维数”,四元数表达。我们将在1.2节首先介绍复数和 2 × 2 2\times2 2×2矩阵之间的关系,然后1.3节中通过 2 × 2 2\times2 2×2的复数矩阵引入四元数。

什么是李群

李群最一般的定义为它是一个群并且是一个光滑流形。这意味着该群的乘法和求逆运算在流形G上是一个光滑的函数。

复数的矩阵表达

矩阵 R θ = ( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) R_{\theta} = \left(\begin{matrix} \cos \theta & - \sin \theta \\ \sin \theta & \cos \theta \end{matrix}\right) Rθ=(cosθsinθsinθcosθ)与复数 z θ = cos ⁡ θ + i sin ⁡ θ z_{\theta} = \cos \theta + i \sin \theta zθ=cosθ+isinθ的等价性,能够在如下的线性组合的形式下看出
R θ = cos ⁡ θ ( 1 0 0 1 ) + sin ⁡ θ ( 0 − 1 1 0 ) R_{\theta} = \cos \theta \left(\begin{matrix} 1 & 0 \\0 &1 \end{matrix}\right) + \sin \theta \left(\begin{matrix} 0 & -1 \\1 & 0 \end{matrix}\right) Rθ=cosθ(1001)+sinθ(0110)
基矩阵为
1 = ( 1 0 0 1 ) , i = ( 0 − 1 1 0 ) 1 = \left(\begin{matrix} 1 &0 \\0 & 1 \end{matrix}\right) ,i = \left(\begin{matrix} 0 & -1 \\1 & 0 \end{matrix}\right) 1=(1001),i=(0110)
满足如下性质
1 2 = 1 , 1 i = i 1 = i , i 2 = − 1 1^2 = 1,1i = i1 = i,i^2 = -1 12=1,1i=i1=i,i2=1
因此矩阵 1 , i 1,i 1,i和复数 i , i i,i i,i具有完全相同的性质。这意味着
( a − b b a ) = a 1 + b i \left(\begin{matrix} a & -b \\b & a \end{matrix}\right) = a1 + bi (abba)=a1+bi
在加法、乘法运算下所有的复数都能用 2 × 2 2\times 2 2×2的矩阵表达,不局限于表达旋转的复数 z θ z_{\theta} zθ。这种表达提供了复数的特定性质的线性代数表达,例如

  • 复数的绝对值 ∣ a + b i ∣ 2 = a 2 + b 2 |a+bi|^2 = a^2 + b^2 a+bi2=a2+b2等于 2 × 2 2\times 2 2×2矩阵的秩。
  • 绝对值的连乘性质 ∣ z 1 z 2 ∣ = ∣ z 1 ∣ ∣ z 2 ∣ |z_1z_2| = |z_1||z_2| z1z2=z1z2来自于矩阵秩的连乘性质
    det ⁡ ( A 1 A 2 ) = det ⁡ ( A 1 ) det ⁡ ( A 2 ) \det (A_1 A_2) = \det (A_1) \det(A_2) det(A1A2)=det(A1)det(A2)
  • 复数的逆对应于矩阵的逆 z − 1 = a − b i a 2 + b 2 z^{-1} = \frac{a-bi}{a^2+b^2} z1=a2+b2abi
    ( a − b b a ) − 1 = 1 a 2 + b 2 ( a b − b a ) \left(\begin{matrix} a & -b \\b & a \end{matrix}\right) ^{-1} = \frac{1}{a^2+b^2} \left(\begin{matrix} a & b \\ -b & a \end{matrix}\right) (abba)1=a2+b21(abba)

两平方等价性质

对于复数 z 1 = a 1 + b 1 i z_1 = a_1 + b_1 i z1=a1+b1i z 2 = a 2 + b 2 i z_2 = a_2 + b_2 i z2=a2+b2i满足如下性质
( a 1 2 + b 1 2 ) ( a 2 2 + b 2 2 ) = ( a 1 a 2 − b 1 b 2 ) 2 + ( a 1 b 2 + a 2 b 1 ) 2 (a1^2 + b_1^2)(a_2^2 + b_2^2) = (a_1 a_2 - b_1 b_2)^2 + (a_1b_2+a_2b_1)^2 (a12+b12)(a22+b22)=(a1a2b1b2)2+(a1b2+a2b1)2

四元数

将有序对 ( a , b ) (a,b) (a,b)表达为复数 a + b i a+bi a+bi或者矩阵 ( a − b b a ) \left(\begin{matrix} a & -b \\ b & a \end{matrix}\right) (abba)则可以定义有序对的和、积和绝对值。同样对于四维有序对(a,b,c,d)能够表达为矩阵形式
q = ( a + i d − b − i c b − i c a − i d ) q = \left(\begin{matrix} a+id & -b-ic \\ b-ic & a-id \end{matrix}\right) q=(a+idbicbicaid)
我们将其称为四元数 q = a + b i + c j + d k q = a + bi + cj + dk q=a+bi+cj+dk的矩阵形式,同样的对于两种形式的表达能够定义平方绝对值 ∣ q ∣ 2 |q|^2 q2
det ⁡ q = det ⁡ ( a + i d − b − i c b − i c a − i d ) = a 2 + b 2 + c 2 + d 2 \det q = \det \left(\begin{matrix} a+id & -b-ic \\ b-ic & a-id \end{matrix}\right) = a^2 + b^2 + c^2 + d^2 detq=det(a+idbicbicaid)=a2+b2+c2+d2
因此 ∣ q ∣ 2 |q|^2 q2等于点 ( a , b , c , d ) (a,b,c,d) (a,b,c,d)到原点 O O O R 4 R^4 R4空间中的平方距离。

四元数的和运算和加法具有相同的性质,即

  • 交换律 q 1 + q 2 = q 2 + q 1 q_1 + q_2 = q_2 + q_1 q1+q2=q2+q1
  • 结合律 q 1 + ( q 2 + q 3 ) = ( q 1 + q 2 ) + q 3 q_1 + (q_2 + q_3) = (q_1 + q_2) + q_3 q1+(q2+q3)=(q1+q2)+q3
  • 求逆 q + ( − q ) = 0 q + (-q) = 0 q+(q)=0
  • 单位元 q + 0 = q q + 0 = q q+0=q

四元数的乘法并不满足交换律,也就是说 q 1 q 2 = q 2 q 1 q_1 q_2 = q_2 q_1 q1q2=q2q1不成立,但是对于矩阵乘法运算的一些性质可以直接套用到四元数乘法中:

  • 结合律 q 1 ( q 2 q 3 ) = ( q 1 q 2 ) q 3 q_1(q_2q_3) = (q_1q_2)q_3 q1(q2q3)=(q1q2)q3
  • 逆元 q q − 1 = 1 , q ≠ 0 qq^{-1} = 1,q \neq 0 qq1=1,q=0
  • 单位元 q 1 = q q 1 = q q1=q
  • 左分配律 q 1 ( q 2 + q 3 = q 1 q 2 + q 1 q 3 q_1(q_2+q_3 = q_1q_2 + q_1q_3 q1(q2+q3=q1q2+q1q3

将四元数写成如下形式能够更好的体现非交换的性质
( a + i d − b − i c b − i c a − i d ) = a 1 + b i + c j + d k \left(\begin{matrix} a+id & -b-ic \\ b-ic & a-id \end{matrix}\right) = a 1 + b i + c j + d k (a+idbicbicaid)=a1+bi+cj+dk
其中
1 = ( 1 0 0 1 ) , i = ( 0 − 1 1 0 ) , j = ( 0 − i − i 0 ) , k = ( i 0 0 − i ) 1 = \left(\begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix}\right),i = \left(\begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix}\right),j=\left(\begin{matrix} 0 & -i \\ -i & 0 \end{matrix}\right),k=\left(\begin{matrix} i & 0 \\ 0 & -i \end{matrix}\right) 1=(1001),i=(0110),j=(0ii0),k=(i00i)
因此有 i 2 = j 2 = k 2 = − 1 i^2 = j^2 = k^2 = -1 i2=j2=k2=1
非交换性集中体现在 i , j , k i,j,k i,j,k之间乘积上,两个不同元素的乘积为圆上的第三个元素。
在这里插入图片描述

如果箭头从第一个元素指向第二个元素则得到正号,反之则是负号。例如, i j = k ij=k ij=k但是 j i = − k ji=-k ji=k因此 i j ≠ j i ij \neq ji ij=ji

四元数的不可交换性实际上是一个好事,因为这样就能表达一些非交换的旋转,例如在三维空间中的旋转变换则为非交换的。

和复数一样,四元数的一些不明显的性质也有相应的线性代数的解释。

  • 绝对值的交换律 |q_1 q_2| = |q_1||q_2|,等价于矩阵秩的交换律 det ⁡ ( q 1 q 2 ) = det ⁡ ( q 1 ) det ⁡ ( q 2 ) \det(q_1 q_2) = \det(q_1) \det(q_2) det(q1q2)=det(q1)det(q2)
  • 矩阵的逆对应四元数的逆,对于 q = a 1 + b i + c j + d k q = a 1 + b i +c j + d k q=a1+bi+cj+dk
    q − 1 = 1 a 2 + b 2 + c 2 + d 2 ( a 1 − b i − c j − d k ) q^{-1} = \frac{1}{a^2+b^2+c^2+d^2}(a1-bi-cj-dk) q1=a2+b2+c2+d21(a1bicjdk)
  • 四元数 a 1 − b i − c j − d k a1-bi-cj-dk a1bicjdk称为原四元数的共轭四元数 q ^ \hat{q} q^,有 q q ^ = a 2 + b 2 + c 2 + d 2 = ∣ q ∣ 2 q \hat{q} = a^2 + b^2 + c^2 + d^2 = |q|^2 qq^=a2+b2+c2+d2=q2
  • 共轭四元数性质 ( q 1 q 2 ) ^ = q 1 ^ q 2 ^ \hat{(q_1 q_2)} = \hat{q_1} \hat{q_2} (q1q2)^=q1^q2^

单位四元数构成的三维球体

绝对值等于一的四元数称为单位四元数,满足如下等式
a 2 + b 2 + c 2 + d 2 = 1 a^2 + b^2 + c^2 + d^2 = 1 a2+b2+c2+d2=1
因此,在四维空间(a,b,c,d)中构成了一个三个自由度的球体 S 3 S^3 S3。从累乘的性质可以看出,单位四元数的乘积依旧是一个单位四元数,因此 S 3 S^3 S3是在四元数乘法下的群。类似于单位复数构成的一维球体,单位四元数构成的三维球体尽管不是那么直接能看出来,但同样包含了一组旋转。接下来两节中,我们将展示单位四元数是如何表达 R 3 R^3 R3空间中的旋转。

绝对值乘法的结果

对于复数和四元数,绝对值乘法首先作为平方和的性质。出现在数论中。人们非常晚才注意到其将乘法和 R 2 , R 3 R^2,R^3 R2,R3空间中的刚体运动的联系起来。假设 u u u是绝对值为1的复数,考虑 v v v w w w是任意的两个复数, u v , u w uv,uw uv,uw分别是相乘后的四元数。

u v uv uv u w uw uw之间的距离
∣ u v − u w ∣ = ∣ u ( v − w ) ∣ = ∣ u ∣ ∣ v − w ∣ = ∣ v − w ∣ |uv - uw| = |u(v-w)| = |u||v-w| = |v-w| uvuw=u(vw)=uvw=vw

换句话说乘上一个单位四元数,是一个刚体变换或者说平面中的等距变换,不改变两点之间的距离。此外等距变换保持原点是固定的,因为 u × 0 = 0 u\times 0=0 u×0=0。如果 u ≠ 1 u\neq 1 u=1,那么没有其他点是固定的,因为 u v = v uv=v uv=v仅当 u = 1 u=1 u=1时成立。因此具有这些特性的运动只有绕原点 O O O的旋转。

至少就保持距离而言,同样的论点也适用于四元数乘法。因此将这种等距性解释为 R 4 R^4 R4空间的旋转,但是我们首先希望展示四元数的乘法提供了研究 R 3 R^3 R3空间中的旋转的一种方法。在了解原因之前,我们先来看四元数的一个自然三维子空间。

纯虚四元数

纯虚四元数有如下的形式
p = b i + c j + d k p = bi + cj + dk p=bi+cj+dk
它们构成一个三维空间,我们记为 R i + R j + R k Ri+Rj+Rk Ri+Rj+Rk,有时候简记为 R 3 R^3 R3。形如 a 1 a 1 a1的四元数构成的空间线 R 1 R1 R1的正交补空间则为 R i + R j + R k Ri+Rj+Rk Ri+Rj+Rk空间。从现在起,我们把实四元数写成1,简单地用R表示实四元数线。

显然, R i + R j + R k Ri+Rj+Rk Ri+Rj+Rk空间中的两个元素和也是 R i + R j + R k Ri+Rj+Rk Ri+Rj+Rk空间中的元素,但是对于乘积则并非如此。实际上,如果 u = u 1 i + u 2 j + u 3 k u=u_1i + u_2 j+u_3k u=u1i+u2j+u3k, v = v 1 i + v 2 j + v 3 k v=v_1i+v_2j+v_3k v=v1i+v2j+v3k,则他们的乘积如下
u v = − ( u 1 v 1 + u 2 v 2 + u 3 v 3 ) + ( u 2 v 3 − u 3 v 2 ) i − ( u 1 v 3 − u 3 v 1 ) j + ( u 1 v 2 − u 2 v 1 ) k uv = -(u_1v_1+u_2v_2+u_3v_3) + (u_2v_3-u_3v_2)i\\-(u_1v_3-u_3v_1)j+(u_1v_2-u_2v_1)k uv=(u1v1+u2v2+u3v3)+(u2v3u3v2)i(u1v3u3v1)j+(u1v2u2v1)k

利用线性代数中的点乘和叉乘表达四元数的乘法为
u v = − u ⋅ v + u × v uv = -u\cdot v + u \times v uv=uv+u×v
公式表明,如果 u , v u,v u,v同向或者反向,则有 u × v = 0 u\times v=0 u×v=0,因此 u v uv uv为实四元数。特殊的,如果 u ∈ R i + R j + R k u\in Ri+Rj+Rk uRi+Rj+Rk并且 ∣ u ∣ = 1 |u|=1 u=1,那么
u 2 = − u ⋅ u = − ∣ u ∣ 2 = − 1 u^2 = -u \cdot u= -|u|^2 = -1 u2=uu=u2=1
因此对于任意的属于 R i + R j + R k Ri+Rj+Rk Ri+Rj+Rk的单位向量,都是“-1的平方根”。

空间旋转的四元数表达

绝对值为1的四元数和绝对值为1的复数一样,有实部值为 cos ⁡ θ \cos \theta cosθ并且有虚部值为 sin ⁡ θ \sin \theta sinθ,正交于实部,因此位于 R i + R j + R k Ri+Rj+Rk Ri+Rj+Rk空间中,这意味着
t = cos ⁡ θ + u sin ⁡ θ t=\cos \theta + u \sin \theta t=cosθ+usinθ
其中,u为 R i + R j + R k Ri+Rj+Rk Ri+Rj+Rk空间中的一个单位向量,并且由上一节可知 u 2 = − 1 u^2=-1 u2=1

这样一个单位四元数 t t t包含了 R i + R j + R k Ri+Rj+Rk Ri+Rj+Rk空间中的旋转,尽管不是简单的使用乘法,因为t和 R i + R j + R k Ri+Rj+Rk Ri+Rj+Rk空间中的一个元素相乘得到的四元数可能不属于 R i + R j + R k Ri+Rj+Rk Ri+Rj+Rk空间。实际上我们对任意一个 q ∈ R i + R j + R k q\in Ri+Rj+Rk qRi+Rj+Rk进行 t − 1 q t t^{-1}qt t1qt的运算,返回的值一定是 R i + R j + R k Ri+Rj+Rk Ri+Rj+Rk空间中的元素。

为了证明这个结论,我们首先有如下记号
t − 1 = cos ⁡ θ − u sin ⁡ θ t^{-1} = \cos \theta - u \sin \theta t1=cosθusinθ

  • 对于实四元数 r r r,则有 t − 1 r t = r t^{-1}rt=r t1rt=r,因此对于四元数的实部一定映射到实部。
  • 由于 t t t可逆,则有 p = t − 1 q t p=t^{-1}qt p=t1qt对应的逆映射 q = t p t − 1 q=tpt^{-1} q=tpt1
  • 假设 p = t − 1 q t ∉ R i + R j + R k p=t^{-1}qt \notin Ri+Rj+Rk p=t1qt/Ri+Rj+Rk,则由第二点知 q = t p t − 1 ∉ R i + R j + R k q=tpt^{-1} \notin Ri+Rj+Rk q=tpt1/Ri+Rj+Rk,与原假设相违背。

因此有结论 ∀ q ∈ R i + R j + R k , t − 1 q t ∈ R i + R j + R k \forall q\in Ri+Rj+Rk,t^{-1}qt\in Ri+Rj+Rk qRi+Rj+Rk,t1qtRi+Rj+Rk

四元数旋转定理 :如果有 t = cos ⁡ θ + u sin ⁡ θ t=\cos \theta + u \sin \theta t=cosθ+usinθ,其中 u ∈ R i + R j + R k u\in Ri+Rj+Rk uRi+Rj+Rk,为一个单位向量。那么四元数 t t t代表将 R i + R j + R k Ri+Rj+Rk Ri+Rj+Rk空间绕轴 u u u旋转 2 θ 2\theta 2θ角度。

证明:首先观察到直线 R u Ru Ru在四元数旋转变换中保持不变,因为
t − 1 u t = ( cos ⁡ θ − u sin ⁡ θ ) u ( cos ⁡ θ + u sin ⁡ θ ) = ( u cos ⁡ θ − u 2 sin ⁡ θ ) ( cos ⁡ θ + u sin ⁡ θ ) = ( u cos ⁡ θ + sin ⁡ θ ) ( cos ⁡ θ + u sin ⁡ θ ) = u ( cos ⁡ 2 θ + sin ⁡ 2 θ ) + sin ⁡ θ cos ⁡ θ + u 2 sin ⁡ θ cos ⁡ θ = u \begin{aligned} t^{-1}ut &= (\cos \theta - u\sin \theta)u(\cos \theta + u\sin \theta) \\ &= (u\cos \theta - u^2\sin \theta)(\cos \theta + u\sin \theta)\\ &= (u\cos \theta + \sin \theta)(\cos \theta + u\sin \theta)\\ &= u(\cos^2\theta + \sin^2\theta)+\sin \theta \cos \theta + u^2 \sin \theta \cos \theta \\ &= u\\ \end{aligned} t1ut=(cosθusinθ)u(cosθ+usinθ)=(ucosθu2sinθ)(cosθ+usinθ)=(ucosθ+sinθ)(cosθ+usinθ)=u(cos2θ+sin2θ)+sinθcosθ+u2sinθcosθ=u

任意选取一个单位向量 v v v垂直于 u u u,则有 u ⋅ v = 0 u\cdot v=0 uv=0,然后定义 w = u × v w=u\times v w=u×v。由此构造了一个 R i + R j + R k Ri+Rj+Rk Ri+Rj+Rk空间中的一个正交坐标系。

对于基向量 v v v
在这里插入图片描述

同理可推导得到 t − 1 w t = v sin ⁡ 2 θ + w cos ⁡ 2 θ t^{-1}wt=v \sin 2\theta + w\cos 2\theta t1wt=vsin2θ+wcos2θ

根据定义,绕向量 u u u的旋转,对于 u u u向量上的直线保持位置不变,绕和 u u u垂直向量的旋转则可套用2d空间中的旋转公式,因此可知旋转的角度为 2 θ 2\theta 2θ

定理旋转的乘积依旧是旋转,旋转的逆也是旋转,旋转构成群。

利用单位四元数的性质证明即可,较为简单。

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值