第4讲 李群与李代数-部分习题解答

5.证明:

R p ∧ R T = ( R p ) ∧ . Rp^{\wedge }R^{T} = (Rp)^{\wedge}. RpRT=(Rp).
证明:
⇒ ( R p ) ∧ n = ( R p ) × ( R R − 1 n ) = R [ p × ( R − 1 n ) ] = R p ∧ R ⊤ n \Rightarrow (Rp)^{\wedge}n = (Rp) \times (RR^{-1}n) = R [ p \times (R ^{-1} n) ] = Rp ^ {\wedge}R^{\top}n (Rp)n=(Rp)×(RR1n)=R[p×(R1n)]=RpRn
⇒ R p ∧ R ⊤ = ( R p ) ∧ \Rightarrow Rp^{\wedge}R^{\top} = (Rp)^{\wedge} RpR=(Rp)
证明过程如下,纯属个人理解,仅供参考交流。
在这里插入图片描述
.

6.1 证明

R e x p ( p ∧ ) R T = e x p ( ( R p ) ∧ ) Rexp(p^{\wedge})R^{T}=exp((Rp)^{\wedge}) Rexp(p)RT=exp((Rp))
该式称为SO(3) 上的伴随性质。

证明:

R e x p ( p ∧ ) R T = R ∑ n = 0 ∞ p ∧ n n ! R T = ∑ n = 0 ∞ ( R p ∧ R T ) n n ! = e x p ( R p ∧ R T ) = e x p ( ( R p ) ∧ ) Rexp(p^{\wedge})R^{T}=R\sum_{n=0}^{\infty }\frac{{p}^{\wedge n}}{n!}R^{T}=\sum _{n=0}^{\infty }\frac{(R {p}^{\wedge} R^{T}) ^{n}}{n!}=exp(R{p}^{\wedge}R^{T})=exp({(Rp)^{\wedge}}) Rexp(p)RT=Rn=0n!pnRT=n=0n!(RpRT)n=exp(RpRT)=exp((Rp))

6.2 证明

T exp ⁡ ( ξ ∧ ) T − 1 = exp ⁡ ( ( A d ( T ) ξ ) ∧ ) \mathbf{T}\exp(\bm{\xi}^\land)\mathbf{T}^{-1} = \exp((Ad(\mathbf{T})\bm{\xi})^\land) Texp(ξ)T1=exp((Ad(T)ξ))
其中:
A d ( T ) = [ R t ∧ R 0 R ] Ad(\textbf{T}) = \begin{bmatrix} \textbf{R} & \bm{t}^\land \textbf{R} \\ 0 & \textbf{R} \end{bmatrix} Ad(T)=[R0tRR]

证明:

ξ = [ ρ ϕ ] \bm{\xi}=\begin{bmatrix}\bm{\rho} \\ \bm{\phi} \end{bmatrix} ξ=[ρϕ] T = [ R t 0 ⊤ 1 ] \textbf{T}=\begin{bmatrix}\textbf{R} & \bm{t} \\ \textbf{0}^\top &1 \end{bmatrix} T=[R0t1], 则:

T exp ⁡ ( ξ ∧ ) T − 1 = T ∑ n = 0 ∞ 1 n ! ( ξ ∧ ) n T − 1 = ∑ n = 0 ∞ 1 n ! ( T ξ ∧ T − 1 ) n = exp ⁡ ( T ξ ∧ T − 1 ) = exp ⁡ ( [ R ϕ ∧ R ⊤ − R ϕ ∧ R ⊤ t + R ρ 0 ⊤ 0 ] ) = exp ⁡ ( [ ( R ϕ ) ∧ − ( R ϕ ) ∧ t + R ρ 0 ⊤ 0 ] ) = exp ⁡ ( [ − ( R ϕ ) ∧ t + R ρ R ϕ ] ∧ ) = exp ⁡ ( ( [ R t ∧ R 0 R ] [ ρ ϕ ] ) ∧ ) = exp ⁡ ( ( A d ( T ) ξ ) ∧ ) \begin{aligned} \textbf{T}\exp(\bm{\xi}^\land)\textbf{T}^{-1} &= \textbf{T} \sum_{n=0}^\infty \frac{1}{n!}(\bm{\xi}^\land)^n\textbf{T}^{-1} \\ &= \sum_{n=0}^{\infty}{\frac{1}{n!}(\textbf{T}\bm{\xi}^\land\textbf{T}^{-1})^n} \\ &= \exp{(\textbf{T}\bm{\xi}^\land\textbf{T}^{-1})}\\ &=\exp({\begin{bmatrix} \textbf{R}\bm{\phi}^\land\textbf{R}^\top & -\textbf{R}\bm{\phi}^\land\textbf{R}^\top\bm{t} + \textbf{R}\bm{\rho} \\ \textbf{0}^\top &0 \end{bmatrix}} )\\ &= \exp(\begin{bmatrix} (\textbf{R}\bm{\phi})^\land & -(\textbf{R}\bm{\phi})^\land\bm{t} + \textbf{R}\bm{\rho} \\ \textbf{0}^\top &0 \end{bmatrix}) \\ &= \exp(\begin{bmatrix} -(\textbf{R}\bm{\phi})^\land\bm{t} + \textbf{R} \bm{\rho} \\ \textbf{R}\bm{\phi} \end{bmatrix} ^\land) \\ &=\exp((\begin{bmatrix} \textbf{R} & \bm{t}^\land \textbf{R} \\ 0 & \textbf{R} \end{bmatrix} \begin{bmatrix} \bm{\rho} \\ \bm{\phi} \end{bmatrix})^\land) \\ &= \exp((Ad(\textbf{T})\bm{\xi})^\land) \end{aligned} Texp(ξ)T1=Tn=0n!1(ξ)nT1=n=0n!1(TξT1)n=exp(TξT1)=exp([RϕR0RϕRt+Rρ0])=exp([(Rϕ)0(Rϕ)t+Rρ0])=exp([(Rϕ)t+RρRϕ])=exp(([R0tRR][ρϕ]))=exp((Ad(T)ξ))

参考:

  1. https://blog.csdn.net/qq_17032807/article/details/84942548
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值