RPKM简介

RNA-seq是透过次世代定序的技术来侦测基因表现量的方法,在衡量基因表现量时,若是单纯以map到的read数来计算基因的表现量,在统计上是一件相当不合理事,因为在随机抽样的情况下,序列较长的基因被抽到的机率本来就会比序列短的基因较高,如此一来,序列长的基因永远会被认为表现量较高,而错估基因真正的表现量,所以Ali Mortazavi等人在2008年提出以RPKM在估计基因的表现量。

RPKM是将map到基因的read数除以map到genome的所有read数(以million为单位)与RNA的长度(以KB为单位)。

其公式为:


其中,total exon reads / mapped reads (millions) 可以视为所有read 数中有百分之多少是map 到这个基因,然后再除以基因长度,就可以某基因得到单位长度有百分之多少的total mapped read 有表现。

以下就用一个简化的例子来说明RPKM的运用方式与概念:

假设一基因体只有两个基因,一个9 KB,一个1 KB,如今有一sample,其map 到9 KB 的read 有18 million 个,map 到1 KB 的有2 million 个,如下图所示。


对于9 KB 的基因而言,

Total exon reads=18 million

Mapped reads=18+2=20 million

Exon length=9 KB

RPKM =18/(20*9)=0.1

对于1 KB 的基因而言,

Total exon reads=2 million

Mapped reads=18+2=20 million

Exon length=1 KB

RPKM =2/(20*1)=0.1

由此我们可以知道这两个基因表现量没有差别。

假设此时我们有另一个sample,其表现如下图所示:


我们可以发现此sample中9 KB基因的read数明显比上一个sample少,如果我们计算RPKM可以得到RPKM = 9/((9+1)*9)=0.1,却与上一个sample相同,这可能是因为cDNA浓度较低或是其他sample备制过程的问题,造成整体read变少,但是对9 KB基因而言,其read数占所有read数的比例并没有发生改变,所以其表现量会和上一个sample相同。


转自:http://www.plob.org/2011/10/24/294.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值