晶圆为什么要抛光?

晶圆抛光是为了满足生产中的平坦化需求,尤其在光刻时,晶圆表面必须极度平坦。抛光方法包括机械抛光、化学抛光和化学机械抛光(CMP)。CMP作为主要的抛光技术,结合了机械摩擦和化学腐蚀,但面临工艺一致性、新材料适应性等挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为什么要把晶圆打磨的这么光滑?

晶圆的最终命运是被切成一枚枚芯片(die),封装在暗无天日的小盒子里,只露出几枚引脚,芯片会看阈值,阻值,电流值,电压值,就是没人看它的颜值,我们在制程中,反复给晶圆打磨抛光,还是为了满足生产中的平坦化需要,尤其是在每次做光刻时,晶圆的表面一定要极致的平坦,这是因为随着芯片制程的缩小,光刻机的镜头要实现纳米级的成像分辨率,就得拼命增大镜片的数值孔径(Numerical Aperture),但这同时会导致焦深(DoF)的下降,焦深是指光学成像的聚焦深度,要想保证光刻图像清晰不失焦,晶圆表面的高低起伏,就必须落在焦深范围之内

简单说就是光刻机为了提高成像精度,牺牲了对焦能力,像新一代的EUV光刻机,数值孔径0.55,但垂直方向上的焦深,总共只有45纳米,光刻时的最佳成像区间则会更小。假如放上去的晶圆不够平坦,厚度不平均,表面有起伏,就会导致高低处的光刻出问题。

图片

当然也不只有光刻才会要求晶圆表面的丝滑,还有很多造芯片的工序,都需要打磨晶圆,

### 使用MATLAB实现晶圆抛光过程的模拟 #### 1. 建立几何模型 为了模拟晶圆抛光的过程,首先需要建立一个三维几何模型来表示晶圆及其表面特征。这可以通过定义晶圆的初始形状以及任何可能存在的缺陷或不平整度来进行。 ```matlab % 定义晶圆尺寸参数 diameter = 300e-3; % 半径为150mm (假设直径为300mm) thickness = 775e-6; % 晶圆厚度约为775微米 [x, y] = meshgrid(linspace(-diameter/2, diameter/2, 200)); z_initial = thickness * ones(size(x)); figure; surf(x*1e3,y*1e3,z_initial*1e6); % 将单位转换到毫米和微米显示更直观 xlabel('X轴方向 (mm)'); ylabel('Y轴方向 (mm)'); zlabel('Z轴方向 (\mum)'); title('未处理前的晶圆'); axis equal; ``` 上述代码创建了一个平坦的圆形晶圆作为起始状态,并将其可视化[^1]。 #### 2. 添加随机粗糙度 真实的晶圆表面上可能存在一些微观尺度上的起伏,这些可以在仿真中通过添加随机噪声的方式引入: ```matlab roughness_amplitude = 0.1e-6; % 设定最大振幅为±0.1μm random_roughness = roughness_amplitude * randn(size(z_initial)); z_with_noise = z_initial + random_roughness; figure; surf(x*1e3, y*1e3, z_with_noise*1e6); shading interp; colorbar; xlabel('X轴方向 (mm)'); ylabel('Y轴方向 (mm)'); zlabel('高度变化 (\mum)'); title('加入随机粗糙后的晶圆'); axis equal; ``` 这段程序给原始平面增加了轻微的高度波动以模仿实际材料中的细微差异。 #### 3. 抛光算法的应用 接下来应用某种形式的滤波器或其他方法来代表物理世界里的化学机械平坦化(CMP)工艺效果。这里采用简单的均值滤波简化描述这一过程: ```matlab windowSize = [9 9]; % 设置窗口大小用于平均计算 filtered_surface = imfilter(double(z_with_noise), fspecial('average', windowSize)); figure; subplot(1,2,1); imagesc(filtered_surface*1e6); colormap(gray); colorbar; title(['经过 ' num2str(windowSize([1])) '-by-' num2str(windowSize([2])) ... ' 平滑过滤后的晶圆']); axis image; subplot(1,2,2); plot_profile = mean(filtered_surface, 2)'; plot(plot_profile*1e6,'LineWidth',2); hold on; plot(mean(z_with_noise, 2)'*1e6,'r--','LineWidth',2); legend({'平滑后轮廓线','原貌'}); xlabel('位置 (像素)'); ylabel('高度 (\mum)'); title('沿中心线截面图对比'); ``` 此部分展示了如何利用图像处理函数`imfilter()`配合特定类型的核(`fspecial()`)执行局部区域内的算术运算从而达到磨削的效果;同时也提供了横断面视图以便观察前后形态改变情况。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿拉伯梳子

你的打赏让我对人性充满了信心!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值