pandas中Groupby对象的agg()方法和apply()方法之decimal对象的聚合处理

       DataFrame对象的groupby()方法是很有用的分组方法,其返回一个Groupby对象,Groupby对象有两个比较常用的用以传入聚合运算的方法,agg()和apply(),一般来说,agg()方法是比apply()方法更全面有效的,因为agg()方法中的参数更多样化,可以对不用的列指定不同的聚合函数,以字典的形式传入就行,即agg(dict),dict={‘column_name’:func},而apply()方法的一般只能给所有列传入一个聚合函数。但是两者在底层功能上也并不完全一样,比如一个例子就是,如果原来的DataFrame中的元素是decimal对象,则agg()方法中如果用np.mean函数去聚合运算就会抛出异常,但是这时如果换成apply()就可以正常运行。当然,也可以先把decimal对象转换成float再用agg()传入聚合函数mean。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值