概念和几何意义
- 设A是n阶矩阵,如果数λ和n维非零列向量x使关系式
A
x
=
λ
x
Ax=\lambda x
Ax=λx
成立,那么,这样的数λ称为矩阵A的特征值,非零向量x称为A的对应于特征值λ的特征向量。 - 从线性变换y = Ax的角度来看:若A为正交矩阵,则y与x的长度相同;若x为A的对应于特征值λ的特征向量,则y与x的方向相同,长度是x的λ倍。
- 上式可写成
(
A
−
λ
E
)
x
=
0
,
(A-\lambda E)x=0,
(A−λE)x=0,
根据克拉默法则,它有非零解的充分必要条件是
∣
A
−
λ
E
∣
=
0.
\left | A-\lambda E\right |=0.
∣A−λE∣=0.
上式是以λ为未知数的一元n次方程,称为矩阵A的特征方程。其左端∣A−λE∣是λ的n次多项式,记作f(λ),称为矩阵A的特征多项式。
算法和性质
- 特征值求法: A的特征值就是特征方程的解。特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,n阶矩阵A在复数范围内有n个特征值。
- 特征向量求法: 把求得的特征值λi代入(A−λE)x=0,可求得A的对应于特征值λi的特征向量xi,kxi(k≠0)是A的对应于特征值λi的全部特征向量。
- 零矩阵的特征值为0。
- 设n阶矩阵A的特征值为λ1,λ2,…,λn,则
(1)λ1+λ2+…+λn = a11+a22+…+ann = tr(A)
(2)λ1λ2…λn = |A| - 若λ是A的特征值,则λk是Ak的特征值(若A可逆,
1
λ
\frac{1}{\lambda}
λ1是A-1的特征值);φ(λ)是φ(A)的特征值。
- 【例】设3阶矩阵A的特征值为1,-1,2,求A*+3A-2E的特征值。
解:因A的特征值全不为0,知A可逆,故A*=|A|A-1,而|A|=λ1λ2λ3=-2,所以A*+3A-2E=-2A-1+3A-2E=φ(A),则φ(λ)=-
2
λ
\frac{2}{λ}
λ2+3λ-2,从而可得特征值为φ(1)=-1,φ(-1)=-3,φ(2)=3. - 设λ1,λ2,…,λm是方阵A的m个特征值,p1,p2,…,pm依次是与之对应的特征向量,如果λ1,λ2,…,λm各不相等,则p1,p2,…,pm线性无关。
Numpy求特征值和特征向量
import numpy as np
A = np.mat('1 0;0 1')
eigvalue, eigvector = np.linalg.eig(A)
print(eigvalue)
print(eigvector)
print(np.linalg.eigvals(A))
[1. 1.]
[[1. 0.]
[0. 1.]]
[1. 1.]
Numpy求解矩阵方程(求解线性方程组Ax=b)
import numpy as np
A = np.mat('1 0;0 1')
b1 = np.mat([[2], [1]])
b2 = np.array([2, 1])
x1 = np.linalg.solve(A, b1)
x2 = np.linalg.solve(A, b2)
print(x1)
print(x2)
[[2.]
[1.]]
[2. 1.]