可降阶的高阶常微分方程 | 高阶微分方程(一)

可降阶的高阶微分方程

1. y ( n ) = f ( x ) y^{(n)}=f(x) y(n)=f(x)型的微分方程

微分方程
y ( n ) = f ( x ) (1) y^{(n)}=f(x) \tag{1} y(n)=f(x)(1)
的右端仅含有自变量x。容易看出,只要把 y ( n − 1 ) y^{(n-1)} y(n1)作为新的未知函数,那么(1)式就是新未知函数的一阶微分方程。两边积分,就得到一个 n − 1 n-1 n1阶的微分方程
y ( n − 1 ) = ∫ f ( x ) d x + C 1 y^{(n-1)}=\int f(x)dx+C_1 y(n1)=f(x)dx+C1
同理可得
y ( n − 2 ) = ∫ [ ∫ f ( x ) d x + C 1 ] d x + C 2 y^{(n-2)}=\int[\int f(x)dx+C_1]dx+C_2 y(n2)=[f(x)dx+C1]dx+C2
依次法继续进行,连续积分n次,便得方程(2)的含有n个任意常数的通解。

2. y ′ ′ = f ( x , y ′ ) y''=f(x,y') y=f(x,y)型的微分方程

方程
y ′ ′ = f ( x , y ′ ) (2) y''=f(x,y') \tag{2} y=f(x,y)(2)
的右端不显含未知函数y。如果我们设 y ′ = p y'=p y=p,那么
y ′ ′ = d p d x = p ′ y''=\frac{dp}{dx}=p' y=dxdp=p
而方程(2)就成为
p ′ = f ( x , p ) p'=f(x,p) p=f(x,p)
这是一个关于变量 x , p x,p x,p的一阶微分方程。设其通解为
p = φ ( x , C 1 ) p=\varphi(x,C_1) p=φ(x,C1)
但是 p = d y d x p=\frac{dy}{dx} p=dxdy,因此又得到一个一阶微分方程
d y d x = φ ( x , C 1 ) \frac{dy}{dx}=\varphi(x,C_1) dxdy=φ(x,C1)
对它进行积分,变得方程(2)的通解为
y = ∫ φ ( x , C 1 ) d x + C 2 y=\int \varphi(x,C_1)dx+C_2 y=φ(x,C1)dx+C2

3. y ′ ′ = f ( y , y ′ ) y''=f(y,y') y=f(y,y)型的微分方程

方程
y ′ ′ = f ( y , y ′ ) (3) y''=f(y,y') \tag{3} y=f(y,y)(3)
不明显地含自变量x。为了求出它的解。我们令 y ′ = p y'=p y=p,并利用复合函数的求导法则把 y ′ ′ y'' y化为对y的导数,即
y ′ ′ = d p d x = d p d y ⋅ d y d x y''=\frac{dp}{dx}=\frac{dp}{dy}·\frac{dy}{dx} y=dxdp=dydpdxdy
这样,方程(3)就成为
p d p d y = f ( y , p ) p\frac{dp}{dy}=f(y,p) pdydp=f(y,p)
这是一个关于变量 y , p y,p y,p的一阶微分方程。设它的通解为
y ′ = p = φ ( y , C 1 ) y'=p=\varphi(y,C_1) y=p=φ(y,C1)
分离变量并积分,便得方程(3)的通解为
∫ d y φ ( y , C 1 ) = x + C 2 \int\frac{dy}{\varphi(y,C_1)}=x+C_2 φ(y,C1)dy=x+C2

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Matlab可以用来求解高阶常微分方程。在给定初始条件的情况下,可以使用ode45函数来求解。ode45是一个常用的Matlab函数,用于求解非刚性和刚性的常微分方程。 使用ode45函数时,需要先定义一个.m文件,其中包含了对应的常微分方程。在这个文件中,你可以定义一个函数,用来描述常微分方程的求解过程。这个函数需要接受两个参数,一个是自变量t,另一个是待求解的因变量y。在函数中,你可以定义常微分方程的具体形式,并返回求解后的结果。 例如,如果要求解一个二常微分方程y''=2x/(1-x^2)*y(2),可以定义一个.m文件,命名为df3.m,其中的代码如下: function dy = df3(x,y) dy=zeros(2,1); % 列向量 dy(1)=y(2); dy(2)=(2*x)/(1-x^2)*y(2); end 然后,在主程序中调用ode45函数来求解这个方程。例如,假设要求解在初始条件y(0)=0和y'(0)=1时的解,代码如下: [t,y] = ode45(@df3,[0,10],[0,1]); 其中,@df3表示对df3函数的引用,[0,10]表示要求解的时间区间,[0,1]表示初始条件。求解结果将保存在t和y两个变量中,分别表示时间和对应的解。 需要注意的是,对于高阶常微分方程,可以通过引入新的变量来将其转化为一组一常微分方程进行求解。因此,在编写对应的.m文件时,需要根据具体的方程形式进行变量的定义和计算。 综上所述,使用Matlab可以方便地求解高阶常微分方程,并得到对应的解。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [用MATLAB求高阶微分方程(组)数值解](https://blog.csdn.net/qq_42107431/article/details/122683952)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [基于MATLAB的高阶常微分方程组求解(附完整代码)](https://blog.csdn.net/forest_LL/article/details/124547981)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值