可降阶的高阶常微分方程 | 高阶微分方程(一)

可降阶的高阶微分方程

1. y ( n ) = f ( x ) y^{(n)}=f(x) y(n)=f(x)型的微分方程

微分方程
y ( n ) = f ( x ) (1) y^{(n)}=f(x) \tag{1} y(n)=f(x)(1)
的右端仅含有自变量x。容易看出,只要把 y ( n − 1 ) y^{(n-1)} y(n1)作为新的未知函数,那么(1)式就是新未知函数的一阶微分方程。两边积分,就得到一个 n − 1 n-1 n1阶的微分方程
y ( n − 1 ) = ∫ f ( x ) d x + C 1 y^{(n-1)}=\int f(x)dx+C_1 y(n1)=f(x)dx+C1
同理可得
y ( n − 2 ) = ∫ [ ∫ f ( x ) d x + C 1 ] d x + C 2 y^{(n-2)}=\int[\int f(x)dx+C_1]dx+C_2 y(n2)=[f(x)dx+C1]dx+C2
依次法继续进行,连续积分n次,便得方程(2)的含有n个任意常数的通解。

2. y ′ ′ = f ( x , y ′ ) y''=f(x,y') y=f(x,y)型的微分方程

方程
y ′ ′ = f ( x , y ′ ) (2) y''=f(x,y') \tag{2} y=f(x,y)(2)
的右端不显含未知函数y。如果我们设 y ′ = p y'=p y=p,那么
y ′ ′ = d p d x = p ′ y''=\frac{dp}{dx}=p' y=dxdp=p
而方程(2)就成为
p ′ = f ( x , p ) p'=f(x,p) p=f(x,p)
这是一个关于变量 x , p x,p x,p的一阶微分方程。设其通解为
p = φ ( x , C 1 ) p=\varphi(x,C_1) p=φ(x,C1)
但是 p = d y d x p=\frac{dy}{dx} p=dxdy,因此又得到一个一阶微分方程
d y d x = φ ( x , C 1 ) \frac{dy}{dx}=\varphi(x,C_1) dxdy=φ(x,C1)
对它进行积分,变得方程(2)的通解为
y = ∫ φ ( x , C 1 ) d x + C 2 y=\int \varphi(x,C_1)dx+C_2 y=φ(x,C1)dx+C2

3. y ′ ′ = f ( y , y ′ ) y''=f(y,y') y=f(y,y)型的微分方程

方程
y ′ ′ = f ( y , y ′ ) (3) y''=f(y,y') \tag{3} y=f(y,y)(3)
不明显地含自变量x。为了求出它的解。我们令 y ′ = p y'=p y=p,并利用复合函数的求导法则把 y ′ ′ y'' y化为对y的导数,即
y ′ ′ = d p d x = d p d y ⋅ d y d x y''=\frac{dp}{dx}=\frac{dp}{dy}·\frac{dy}{dx} y=dxdp=dydpdxdy
这样,方程(3)就成为
p d p d y = f ( y , p ) p\frac{dp}{dy}=f(y,p) pdydp=f(y,p)
这是一个关于变量 y , p y,p y,p的一阶微分方程。设它的通解为
y ′ = p = φ ( y , C 1 ) y'=p=\varphi(y,C_1) y=p=φ(y,C1)
分离变量并积分,便得方程(3)的通解为
∫ d y φ ( y , C 1 ) = x + C 2 \int\frac{dy}{\varphi(y,C_1)}=x+C_2 φ(y,C1)dy=x+C2

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值