固有值问题的Sturm-Liouville定理(广义Fourie展开) | 分离变量法(四)| 偏微分方程(十六)

固有值问题的Sturm-Liouville定理

函数的广义Fourie展开

在线性代数中,n维实线性空间V中定义了内积
⟨ x , y ⟩ = ∑ j = 1 n x j y j , x = ( x 1 , x 2 , ⋅ ⋅ ⋅ , x n ) , y = ( y 1 , y 2 , ⋅ ⋅ ⋅ , y n ) \langle \bold x,\bold y\rangle=\sum_{j=1}^n x_jy_j,\quad \bold x=(x_1,x_2,···,x_n), \quad \bold y=(y_1,y_2,···,y_n) x,y=j=1nxjyj,x=(x1,x2,,xn),y=(y1,y2,,yn)
成为内积空间(欧几里得空间)。内积空间的向量有了长度(模)
∣ ∣ x ∣ ∣ = ⟨ x , x ⟩ 1 2 = ( ∑ j = 1 n ∣ x j 2 ∣ ) 1 2 ||x||=\langle \bold x,\bold x\rangle^\frac{1}{2} =(\sum_{j=1}^n|x_j^2|)^\frac{1}{2} x=x,x21=(j=1nxj2)21
向量间有了夹角。特别地,如果
⟨ x , y ⟩ = ∑ j = 1 n x j y j = 0 \langle \bold x,\bold y\rangle=\sum_{j=1}^n x_jy_j=0 x,y=j=1nxjyj=0
则称向量x与y正交。如果 { e 1 , e 2 , ⋅ ⋅ ⋅ , e n } \{e_1,e_2,···,e_n\} {e1,e2,,en}是该内积空间V的一组标准正交基 ( ⟨ e i , e j ⟩ = δ i j ) , ∀ x ∈ V (\langle \bold e_i,\bold e_j\rangle =\delta_{ij}),\forall \bold x\in V (ei,ej=δij),xV,有 x = ∑ j = 1 n c j e j \bold x=\sum_{j=1}^nc_je_j x=j=1ncjej,其中, c j = ⟨ x , e j ⟩ c_j=\langle \bold x,e_j \rangle cj=x,ej。对于复线性空间,只需定义内积 ⟨ x , y ⟩ = ∑ j = 1 n x j y ‾ j \langle \bold x,\bold y \rangle=\sum_{j=1}^nx_j \overline y_j x,y=j=1nxjyj也成为内积空间。

推广到函数空间,令 L 2 [ a , b ] = { f ( x ) ∣ ∫ a b ∣ f ( x ) ∣ 2 d x < + ∞ } L^2[a,b]=\{f(x)|\int_a^b|f(x)|^2dx<+\infty\} L2[a,b]={f(x)abf(x)2dx<+},按照函数的加法和数乘,成为无穷维的线性空间。在实函数时,定义内积
⟨ f ( x ) , g ( x ) ⟩ = ∫ a b f ( x ) g ( x ) d x \langle f(x),g(x) \rangle=\int_{a}^b f(x)g(x)dx f(x),g(x)=abf(x)g(x)dx
L 2 [ a , b ] L^2[a,b] L2[a,b]成为无穷维内积空间,函数有了长度(模)
∣ ∣ f ( x ) ∣ ∣ = ⟨ f ( x ) , f ( x ) ⟩ 1 2 = ( ∫ a b ∣ f ( x ) ∣ 2 d x ) 1 2 ||f(x)||=\langle f(x),f(x) \rangle^{\frac{1}{2}}=(\int_a^b|f(x)|^2dx)^{\frac{1}{2}} f(x)=f(x),f(x)21=(abf(x)2dx)21
函数间有了夹角,特别地,如果
⟨ f ( x ) , g ( x ) ⟩ = ∫ a b f ( x ) g ( x ) d x \langle f(x),g(x) \rangle=\int_{a}^b f(x)g(x)dx f(x),g(x)=abf(x)g(x)dx
则称函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x)正交。如果 L 2 [ a , b ] L^2[a,b] L2[a,b]中有一串正交函数 { X j ( x ) , j = 1 , 2 , ⋅ ⋅ ⋅ } \{X_j(x),j=1,2,···\} {Xj(x),j=1,2,}, ( ⟨ X i ( x ) , X j ( x ) ⟩ = ∣ ∣ X j ( x ) ∣ ∣ 2 δ i j ) (\langle X_i(x),X_j(x) \rangle=||X_j(x)||^2\delta_{ij}) (Xi(x),Xj(x)=Xj(x)2δij),使 ∀ f ( x ) ∈ L 2 [ a , b ] \forall f(x)\in L^2[a,b] f(x)L2[a,b]
f ( x ) = ∑ j = 1 + ∞ c j X j ( x ) (7) f(x)=\sum_{j=1}^{+\infty}c_jX_j(x) \tag{7} f(x)=j=1+cjXj(x)(7)
则称 { X j ( x ) , j = 1 , 2 , ⋅ ⋅ ⋅ } \{X_j(x),j=1,2,···\} {Xj(x),j=1,2,} L 2 [ a , b ] L^2[a,b] L2[a,b]中的一串完备正交函数系(正交基)。(7)式称为 f ( x ) f(x) f(x)关于正交基 { X j ( x ) , j = 1 , 2 , ⋅ ⋅ ⋅ } \{X_j(x),j=1,2,···\} {Xj(x),j=1,2,}广义Fourier展开。可以证明,展开式中系数
c j = ⟨ f ( x ) , X j ( x ) ⟩ ∣ ∣ X j ( x ) ∣ ∣ 2 = ∫ a b f ( x ) X j ( x ) d x ∫ a b ∣ X j ( x ) ∣ 2 d x c_j=\frac{\langle f(x),X_j(x)\rangle}{||X_j(x)||^2}=\frac{\int_a^bf(x)X_j(x)dx}{\int_a^b|X_j(x)|^2dx} cj=Xj(x)2f(x),Xj(x)=abXj(x)2dxabf(x)Xj(x)dx
称为广义Fourier系数,函数 f ( x ) f(x) f(x)由它的广义Fourier系数完全确定。展开式中级数的收敛是指
l i m N → + ∞ ∣ ∣ f ( x ) − ∑ j = 1 N c j X j ( x ) ∣ ∣ = l i m N → + ∞ ( ∫ a b ∣ f ( x ) − ∑ j − 1 N c j X j ( x ) ∣ 2 d x ) 1 2 = 0 lim_{N\to +\infty}||f(x)-\sum_{j=1}^Nc_jX_j(x)||=lim_{N\to+ \infty}(\int_a^b|f(x)-\sum_{j-1}^Nc_jX_j(x)|^2dx)^{\frac{1}{2}}=0 limN+f(x)j=1NcjXj(x)=limN+(abf(x)j1NcjXj(x)2dx)21=0
称为均方收敛。对于复函数空间,只需修改内积定义为
⟨ f ( x ) , g ( x ) ⟩ = ∫ a b f ( x ) g ( x ) ‾ d x \langle f(x),g(x)\rangle=\int_a^bf(x)\overline{g(x)}dx f(x),g(x)=abf(x)g(x)dx
n维内积空间V上的线性变换A(矩阵)称为自共轭的,如果 ∀ x , y ∈ V \forall \bold x,\bold y\in V x,yV,有 ⟨ A x , y ⟩ = ⟨ x , A y ⟩ \langle \bold Ax,\bold y \rangle=\langle \bold x,A\bold y\rangle Ax,y=x,Ay。自共轭变换的固有值都是实数,不同固有值对应的固有向量相互正交。因此,自共轭变换所有固有值对应的n个相互正交的固有向量构成n维内积空间的正交基。

在函数空间 L 2 [ a , b ] L^2[a,b] L2[a,b](或其子空间)上,如果存在线性变换L(算子),使对该空间中任意 f ( x ) , g ( x ) f(x),g(x) f(x),g(x),有 ⟨ L f ( x ) , g ( x ) ⟩ = ⟨ f ( x ) , L g ( x ) ⟩ \langle Lf(x),g(x) \rangle=\langle f(x),Lg(x)\rangle Lf(x),g(x)=f(x),Lg(x),则称算子L在此空间上自共轭。函数空间上的自共轭算子的固有值,固有函数也有n维内积空间上自共轭变换的固有值,固有向量的类似性质。

称二阶线性常微分方程
[ k ( x ) X ′ ( x ) ] ′ − q ( x ) X ( x ) + λ ρ ( x ) X ( x ) = 0 (8) [k(x)X'(x)]'-q(x)X(x)+\lambda \rho(x)X(x)=0 \tag{8} [k(x)X(x)]q(x)X(x)+λρ(x)X(x)=0(8)
称为Sturm-Liouville(S-L)型方程。之前分离变量得到的方程 X ′ ′ ( x ) + λ ( x ) = 0 X''(x)+\lambda(x)=0 X(x)+λ(x)=0就是一个最简单的S-L型方程。对于一般的二阶线性常微分方程
b 0 ( x ) X ′ ′ ( x ) + b 1 ( x ) X ′ ( x ) + b 2 ( x ) X ( x ) + λ X ( x ) = 0 b_0(x)X''(x)+b_1(x)X'(x)+b_2(x)X(x)+\lambda X(x)=0 b0(x)X(x)+b1(x)X(x)+b2(x)X(x)+λX(x)=0
b 0 ( x ) ≠ 0 b_0(x)\neq 0 b0(x)=0时,两边同乘以
1 b 0 ( x ) e x p ( ∫ b 1 ( x ) b 0 ( x ) d x ) \frac{1}{b_0(x)}exp(\int\frac{b_1(x)}{b_0(x)}dx) b0(x)1exp(b0(x)b1(x)dx)
即化为S-L型方程(8),其中
k ( x ) = e x p ( ∫ b 1 ( x ) b 0 ( x ) d x ) , q ( x ) = − b 2 ( x ) b 0 ( x ) k ( x ) , ρ ( x ) = 1 b 0 ( x ) k ( x ) k(x)=exp(\int\frac{b_1(x)}{b_0(x)}dx),\quad q(x)=-\frac{b_2(x)}{b_0(x)}k(x),\quad \rho(x)=\frac{1}{b_0(x)}k(x) k(x)=exp(b0(x)b1(x)dx),q(x)=b0(x)b2(x)k(x),ρ(x)=b0(x)1k(x)
考察S-L型方程的固有值问题
{ [ k ( x ) X ′ ( x ) ] ′ − q ( x ) X ( x ) + λ ρ ( x ) X ( x ) = 0 , a < x < b α 1 X ( a ) − β 1 X ′ ( a ) = 0 , α 2 X ( b ) + β 2 X ′ ( b ) = 0 (9) \begin{cases} [k(x)X'(x)]'-q(x)X(x)+\lambda \rho(x)X(x)=0,\quad a<x<b \\ \alpha_1X(a)-\beta_1X'(a)=0,\quad \alpha_2X(b)+\beta_2X'(b)=0 \tag{9} \end{cases} {[k(x)X(x)]q(x)X(x)+λρ(x)X(x)=0,a<x<bα1X(a)β1X(a)=0,α2X(b)+β2X(b)=0(9)

a j , b j ≥ 0 , a j 2 + β j 2 ≠ 0 , j = 1 , 2 a_j,b_j\geq 0, \quad a_j^2+\beta_j^2\neq 0, \quad j=1,2 aj,bj0,aj2+βj2=0,j=1,2

其中,方程的系数满足条件:
( 1 ) k ( x ) ∈ C ′ [ a , b ] ,   q ( x ) ,   ρ ( x ) ∈ C [ a , b ] ( 2 ) 在 [ a , b ] 上 , k ( x ) > 0 , ρ ( x ) > 0 , q ( x ) ≥ 0 (1)k(x)\in C^{'}[a,b], \, q(x),\,\rho(x)\in C[a,b] \\ (2)在[a,b]上,k(x)>0,\rho(x)>0,q(x)\geq 0 (1)k(x)C[a,b],q(x),ρ(x)C[a,b](2)[a,b]k(x)>0,ρ(x)>0,q(x)0
在实函数空间 L ρ 2 [ a , b ] = { f ( x ) ∣ ∫ a b ∣ f ( x ) ∣ 2 ρ ( x ) d x < + ∞ } L_\rho^2[a,b]=\{f(x)|\int_a^b|f(x)|^2\rho(x)dx<+\infty\} Lρ2[a,b]={f(x)abf(x)2ρ(x)dx<+}中定义加权内积
⟨ f ( x ) , g ( x ) ⟩ = ∫ a b f ( x ) g ( x ) ρ ( x ) d x \langle f(x),g(x)\rangle = \int_a^bf(x)g(x)\rho(x)dx f(x),g(x)=abf(x)g(x)ρ(x)dx
L ρ 2 [ a , b ] L_\rho^2[a,b] Lρ2[a,b]也成为内积空间。

定理:常点情况下的Sturm-Liouville定理

S-L型方程的固有值问题(9)式的固有值、固有函数有以下性质:

(1)非负性:所有的固有值 λ \lambda λ均为实数,且 λ ≥ 0 \lambda \geq 0 λ0。有零固有值 λ 0 = 0 \lambda_0=0 λ0=0的充要条件是 q ( x ) ≡ 0 q(x)\equiv 0 q(x)0,且两端不出现第I、III类边界条件。固有值对应的固有函数为常数1.

(2)**可数性:**全体固有值组成无穷数列
λ 1 < λ 2 < ⋅ ⋅ ⋅ < λ n < ⋅ ⋅ ⋅ , l i m n → + ∞ λ n = + ∞ \lambda_1<\lambda_2<···<\lambda_n<···, \quad lim_{n\to+\infty}\lambda_n=+\infty λ1<λ2<<λn<,limn+λn=+
对应于每一个固有值,只有一个线性独立的固有函数,组成对应的固有函数列
X ( 1 ) , X 2 ( x ) , ⋯   , X n ( x ) , ⋯ X_(1),\quad X_2(x),\quad \cdots,\quad X_n(x),\quad \cdots X(1),X2(x),,Xn(x),
(3)正交性:不同固有值对应的固有函数相互加权正交,即若固有值 λ n ≠ λ m \lambda_n \neq \lambda_m λn=λm,对应的固有函数为 X n ( x ) , X m ( x ) X_n(x),X_m(x) Xn(x),Xm(x),则有
⟨ X n ( x ) , X m ( x ) ⟩ = ∫ a b X n ( x ) X m ( x ) ρ ( x ) d x = 0 \langle X_n(x),X_m(x)\rangle = \int_a^bX_n(x)X_m(x)\rho(x)dx=0 Xn(x),Xm(x)=abXn(x)Xm(x)ρ(x)dx=0
(4)完备性:全体固有函数 { X n ( x ) , n = 1 , 2 , ⋯   } \{X_n(x), n=1,2,\cdots\} {Xn(x),n=1,2,}构成 L ρ 2 [ a , b ] L_\rho^2[a,b] Lρ2[a,b]空间中以 ρ ( x ) \rho(x) ρ(x)为权函数的完备正交函数系(正交基)。

这里的完备性有如下两种情况:

对于在 [ a , b ] [a,b] [a,b]上有连续一阶导数,分段连续二阶导数,且满足定解问题中的齐次边界条件(9)式的函数 f ( x ) f(x) f(x),有在 [ a , b ] [a,b] [a,b]上绝对一致收敛的广义Fourier展开
f ( x ) = ∑ n = 1 ∞ C n X n ( x ) (10) f(x)=\sum_{n=1}^\infty C_nX_n(x) \tag{10} f(x)=n=1CnXn(x)(10)
其中,广义Fourier系数
C n = ∫ a b f ( x ) X n ( x ) ρ ( x ) d x ∣ ∣ X n ( x ) ∣ ∣ 2 (11) C_n=\frac{\int_a^bf(x)X_n(x)\rho(x)dx}{||X_n(x)||^2} \tag{11} Cn=Xn(x)2abf(x)Xn(x)ρ(x)dx(11)
∣ ∣ X n ( x ) ∣ ∣ = [ ∫ a b ∣ X n ( x ) ∣ 2 ρ ( x ) d x ] 1 2 ||X_n(x)||=[\int_a^b|X_n(x)|^2\rho(x)dx]^{\frac{1}{2}} Xn(x)=[abXn(x)2ρ(x)dx]21。如果 ∣ ∣ X n ( x ) ∣ ∣ = 1 ||X_n(x)||=1 Xn(x)=1,则称 X n ( x ) X_n(x) Xn(x)为归一的, { X n ( x ) } \{X_n(x)\} {Xn(x)}标准正交基

对于 L ρ 2 [ a , b ] L^2_{\rho}[a,b] Lρ2[a,b]中任意函数 f ( x ) f(x) f(x),Fourier展开式(10)、(11)式仍然成立,但是展式(10)是均方收敛意义下的,即部分和的极限。
f ( x ) = l i m N → + ∞ ∑ n = 1 N C n X n ( x ) f(x)=lim_{N\to+\infty}\sum_{n=1}^NC_nX_n(x) f(x)=limN+n=1NCnXn(x)
是指
l i m N → + ∞ ∣ ∣ f ( x ) − ∑ n = 1 N C n X n ( x ) ∣ ∣ = l i m N + ∞ ( ∫ a b ∣ f ( x ) − ∑ n = 1 N C n X n ( x ) ∣ 2 ρ ( x ) d x ) 1 2 = 0 lim_{N\to+\infty}||f(x)-\sum_{n=1}^NC_nX_n(x)||=lim_{N+\infty}(\int_a^b|f(x)-\sum_{n=1}^NC_nX_n(x)|^2\rho(x)dx)^{\frac{1}{2}}=0 limN+f(x)n=1NCnXn(x)=limN+(abf(x)n=1NCnXn(x)2ρ(x)dx)21=0

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值