论文概述
该论文提出了一种基于深度学习的方法实现黑色素瘤病变的自动检测和分割。该方法包含一种增强的编码-解码网络用于提取特征,该网络通过一系列跳步路径(skip pathway)连接编码子网络和解码器子网络,使两者的特征映射(feature maps)更接近。另外,该系统采用多阶段的方法,先利用softmax分类器进行像素级分类,后使用损伤分类器(Lesion Classification)分类器根据像素级分类的结果分析皮肤病变情况。
简介
该论文在所有过程中使用一个单一的深度卷积神经网络(DCNN)。该方法采用增强的深度监督编码-译码(encoder-decoder)网络来提取图像特征。该网络可以通过其多阶段方法从病变图像中提取复杂特征,其中编码阶段学习一般外观,包括可能的毛发对病变区域的影响和定位信息,而译码阶段学习病变边界特征。论文提出的网络与现有的方法的区别在于以下三个方面:
(1)通过一系列的跳步路径将编码子网络和解码子网络连接在一起,从而增强了网络的特征学习能力和特征提取能力;
(2)在网络的每个跳步路径上设计多尺度系统,处理不同大小的皮肤病变图像;
(3)使用Lesion-classifier方法以像素级的层次将皮肤病变分为黑色素瘤和非黑色素瘤。
该算法可以使用有限的训练图像数据集并在计算资源有限的情况下检测黑色素瘤,以满足实时临床实践的需求。
网络的自组织过程
图1所示为从图像预处理到特征提取,再到像素元分类(Pixel-wise Classification),最后到病变分类的各个主要阶段。主要包括皮肤损伤图像数据集、编码-译码网络、Softmax分类器和损伤分类器。图像数据集在输入到编码-译码网络之前首先进行预处理。利用带标签的皮肤镜图像(dermoscopic images)对深度卷积编码-译码网络进行训练。输入首先送入编码器子网络,然后送入解码器子网络进行特征提取。另外一个模块将骰子损失函数(dice loss function)和softmax分类器结合起来,用于对图像进行像素级分类和识别黑色素瘤敏感区域。
在服务器上,全文内容详见:http://bbit.vip/service/main.php?version=1&type=article&id=9