基于形态学处理的车牌定位matlab仿真

721 篇文章 1107 订阅 ¥39.90 ¥99.00
本文介绍了基于车牌特点的定位方法,包括颜色、形状、纹理和背景对比等特点,强调了车牌定位和字符分割的重要性。车牌定位采用形态学处理,仿真使用MATLAB 2022a,实现了倾斜矫正和干扰信息去除。字符分割采用投影法,根据车牌的水平排列特性进行分割。文章展示了MATLAB仿真效果,并提供了源码。
摘要由CSDN通过智能技术生成

目录

1.算法概述

2.仿真效果

3.MATLAB源码


1.算法概述

       车牌识别系统包括4个步骤:车牌定位 (包括识别图像中的车牌位置并将其分割) 、图像处理、字符分割与字符识别, 如图1所示。车牌定位的主要功能是从图像中可能包含车牌的候选区域中定位车牌区域;图像处理的功能是强化车牌关键特征;字符分割的功能是将车牌字符从检测到的车牌区域背景中分离出来;字符识别的功能是用已知字符识别分割得到的字符。
       车牌识别程序的设计主要基于车牌的固有特点,这些特点指导算法的设计。在一个识别系统中首先选择某一个或几个车牌的特点,然后根据这些特点设计算法。一般情况下,选择的特点越多,识别的正确率越高,但程序也将变得冗杂,效率低下。因为本实验主要对小型汽车车牌识别系统的设计,所以总结小型汽车车牌的特点如下所示:
(1)颜色特点:车牌为蓝底白字。并且白色的面积占总面积的比例在一定范围之内。从这个特点中可以想到通过在一张照片中查找蓝色区域,并且区域内的白色面积占总面积的比例在一定范围内来初步定为车牌区域。
(2)形状特点:车牌形状为矩形,虽然图片中的车牌区域面积的大小不确定,但车牌区域的长与宽的比在一定范围之内,这一特点很容易通过编程语言实现。
(3)纹理特点:车牌信息是以水平方式排列的,所以水

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Simuworld

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值