基于Dijkstra最短路径算法的栅格地图避障路线规划仿真

723 篇文章 1116 订阅 ¥39.90 ¥99.00
本文介绍了使用MATLAB进行Dijkstra最短路径算法的实现,用于栅格地图上的避障路线规划。通过五个核心函数完成路径规划,包括地图生成、最短路径计算等。Dijkstra算法在无向图中寻找单源最短路径,通过不断更新最短路径,最终得到从起点到所有顶点的最短路径。
摘要由CSDN通过智能技术生成

目录

1.算法仿真效果

2.MATLAB源码

3.算法概述

4.部分参考文献


1.算法仿真效果

matlab2022a仿真结果如下:

2.MATLAB源码

%**********************************************************************************
%订阅用户如果对某一个算法感兴趣,可以私信留言文章链接和邮箱,分享任意一份完整代码。
%一般当天晚上或第二天下午4点前会将完整程序发到您的邮箱中。
%*********************************************************************************

function [Cost, Route] = Dijkstras( Graph, SourceNode, TerminalNode )
 
if size(Graph,1) ~= size(Graph,2)
   fprintf('The Graph must be a square Matrix\n');
   return; 
栅格地图避障路径规划是机器人导航中的一个重要问题。该问题的目标是在给定的栅格地图上,使机器人能够从起点到达终点,同时避免障碍物的干扰。其中,栅格地图是将环境分割成固定大小的正方形单元格,每个单元格可以表示为空闲区域或障碍物区域。 DKS(Dijkstra-Kornhauser-Shah)最短路径算法是基于Dijkstra算法的改进版,它通过避免对已经处理过的结点进行重复处理,从而提高了计算效率。在栅格地图中,DKS算法可以被用于寻找起点到终点的最短路径。具体步骤如下: 1. 初始化所有结点的距离为无穷大,起点的距离为0; 2. 将起点加入开放列表,开始循环; 3. 从开放列表中选取距离起点最近的结点,将其从开放列表中移除,并将其加入关闭列表; 4. 对该结点周围的结点进行检查,如果该结点不在开放列表中,则将其加入开放列表,并更新其距离和父结点; 5. 如果终点被加入关闭列表,算法终止,否则回到步骤3。 在得到最短路径后,可以使用该路径进行机器人的导航。同时,为了避免机器人与障碍物的碰撞,可以引入一些避障算法,例如A*算法、RRT算法等。 为了验证栅格地图避障路径规划的有效性,可以进行仿真实验。通过构建虚拟环境和机器人模型,将路径规划算法避障算法结合起来,得到机器人在栅格地图上的运动轨迹。通过调整环境和机器人参数,可以对路径规划算法的性能和鲁棒性进行评估。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Simuworld

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值