【点云学习系列】之Gaussian-process-based Real-time Ground Segmentation for Autonomous Land Vehicles

本文介绍了基于高斯过程的实时地面分割算法在自动驾驶车辆上的应用。首先将点云划分为扇区并进行有序存储,然后通过线拟合找到种子点,再利用高斯过程回归估计协方差进行点云分割。实验结果显示,虽然在某些情况下高斯过程提取的地面点存在高度准确性问题,但整体效果良好,适用于一般道路的地面点滤除。对于坡度较大的地下车库等场景,可能需要结合先验地形信息或深度学习方法来提高效果。
摘要由CSDN通过智能技术生成
简介

  点云地面点分割目前主要有如下几种方式:空域与频域。空间域方法为主流【后面的索引数字为末尾的链接论文顺序】:网格化方法(2,3)、线方法(4,5,6)、曲面方法(7,8,9,10,11)频域分割方法主要是Douillard.B在2012提出通过FFT变化频域来进行水下地形分割FFT-based Terrain Segmentation for Underwater Mapping。该篇代码已经放在文末的链接。本篇博客的高斯过程地面分割算法继承自线方法的策略,大概流程主要是首先将点云划分扇区,以此来将点云从无序变成有序,随后进行线拟合与地面种子点估计,然后进行高斯过程的回归估计协方差,以此来判断是否存在新的种子点,最后进行点云分割。关于多维多元高斯过程原理,推荐参考传送门,讲解较为细致与具体。

算法原理

  高斯过程地面分割算法主要包含6个步骤:①polar grid map representation;②line fitting;③seed estimation;④gaussian process regression with non-stationary covariance function;⑤new seed evaluation;⑥point-wise segmentation;该算法输入原始点云,输出对每个原始点云打上标签label进行分辨地面点or障碍物。下面我们将分别介绍一下高斯过程地面分割的上述主要6个步骤:(下图为Ground Segmentation的算法流程)

  • Polar Grid Map Representation

  这个polar grid map步骤主要讲点云划分成M个扇区,每个扇区划分成N个区间(bins)。该步骤与前论文【点云学习系列】之Fast segmentation of 3d point clouds for ground vehicles的预处理点云借鉴而来。这样就将无序的点云进行有序化存储。具体点云存储规则见上篇博客解释。

  • Line Fitting

  该Line Fitting过程就是上面算法流程图的函数fitline代码该过程。关于线的提取主要借鉴论文A comparison of line extraction algorithms using 2d laser rangefinder for indoor mobile robotics(IROS)的方法。同时,该篇论文采用Incremental Algorithm,由于所有的点都被塞入了不同的扇区 P G i PG_i PGi里面,在塞入不同的 P G i PG_i PGi的时候根据它们到LIDAR传感器的距离已经进行了排序。每个点塞入 P G i PG_i PGi被分配一个length-scale的计算公式如下:

l i = { a ∗ l g ( 1 ∣ g ( r i ) ∣ ) if  ∣ g ( r i ) ∣ > g d e f a ∗ l g ( 1 ∣ g d e f ∣ ) otherwise l_i=\begin{cases} a*lg(\frac{1}{|g(r_i)|}) & \text{if $|g(r_i)|>g_{def}$}\\ a*lg(\frac{1}{|g_{def}|}) & \text{otherwise} \end{cases} li={ alg(g(

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值