CBAM
- 目的:增强特征的表达,关注重要特征并抑制不重要特征。
- 原理:CBAM有两个组成部分,第一部分是通道注意力模型,第二部分是空间注意力模型。
- 提取通道注意力的时候,就把空间信息暂时忽略,因此在空间维度上分别进行最大值池化与平均值池化,得到两个只有通道维度的向量,然后将这两个向量分别通过一个两层的神经网络,两特征相加后经过sigmoid函数。然后用得到的这个通道注意力向量与特征图相乘,得到空间注意力处理的输入。
- 提取空间注意力的时候,同样的道理,要将通道信息暂时忽略,因此在通道维度上进行最大值池化和平均值池化,然后将这两个结果基于通道做连接操作。然后经过一个卷积操作,降维为1个通道。再经过sigmoid生成空间注意力特征。
- 整体:将上述空间注意力模块提取的feature和该模块的输入feature做乘法,得到最终生成的特征。通道注意力更加关注于全局信息,而空间注意力关注于局部信息。因此,这两个注意模块的结合将有效地提取突出特征。
- 提取通道注意力的时候,就把空间信息暂时忽略,因此在空间维度上分别进行最大值池化与平均值池化,得到两个只有通道维度的向量,然后将这两个向量分别通过一个两层的神经网络,两特征相加后经过sigmoid函数。然后用得到的这个通道注意力向量与特征图相乘,得到空间注意力处理的输入。
常用评价指标
- 常用的四个元素:对一个二分问题来说,会出现四种情况。
- TP:实例是正类被预测成正类,称之为真正类(True positive)。
- FP:实例是负类被预测成正类,称之为假正类(False positive)。
- TN:实例是负类被预测成负类,称之为真负类(True negative)。
- FN:实例正类被预测成负类,称之为假负类(False negative)。
- 召回率(Recall):真正地正类中能检测到多少正类的概率。
- 精确率(Precision):预测为正类中真正正类的概率
- F1 Score
- mAP
首先需要介绍一下PR曲线
其中P和R 分别代表了精确度与召回度,相当于PR曲线与坐标轴所围成的面积