球谐函数的理解

作为Rotation Equivariant Networks for Tracking的先导篇,进行知识储备。

circular harmonics functon ψ j k \psi_{jk} ψjk圆谐函数

在极坐标中,由径向的三角圆谐函数(1)和角向的复指数函数(2)组合而成的函数系(3)。

{ τ j ( r ) = { 1 r 当 j = 0 时 s i n ( ( j + 1 ) π r ) 当 j 为奇数时 c o s ( j π r ) 当 j 为偶数时 ( 1 ) Y k = e i k ϕ ( 2 ) ψ j k ( r , ϕ ) = τ j ( r ) ∗ e i k ϕ ( 3 ) \qquad \\ \begin{cases} \tau_j(r)=\begin{cases} \frac{1}{\sqrt{r}} & 当j=0时\\ \quad \\ sin((j+1)\pi r) & 当j为奇数时\\ \quad \\ cos(j\pi r) &当j为偶数时 \end{cases} &(1)\\ \quad \\ Y_k=e^{ik\phi} &(2)\\ \end{cases}\\ \quad \\ \psi_{jk}(r,\phi) = \tau_j(r)*e^{ik\phi} \hspace{34mm}(3) \\ \qquad \\ τj(r)= r 1sin((j+1)πr)cos(r)j=0j为奇数时j为偶数时Yk=eikϕ(1)(2)ψjk(r,ϕ)=τj(r)eikϕ(3)
推导:

  1. 球面坐标:

球面坐标

{ x = r s i n θ c o s φ y = r s i n θ s i n φ z = r c o s θ \qquad \\ \begin{cases} x = rsin\theta cos\varphi \\ y = rsin\theta sin\varphi \\ z = r cos\theta \end{cases} \\ \qquad \\ x=rsinθcosφy=rsinθsinφz=rcosθ

  1. Laplace方程

▽ 2 = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 = 0 \qquad \\ \bigtriangledown^2 = \frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}=0 \\ \qquad \\ 2=x22+y22+z22=0

  1. 球面坐标代入拉普拉斯方程:

带入拉普拉斯方程
1 r 2 ∂ ∂ r ( r 2 ∂ f ∂ r ) + 1 r 2 s i n θ ∂ ∂ θ ( s i n θ ∂ f ∂ θ ) + 1 r 2 s i n 2 θ ∂ 2 f ∂ φ 2 = ▽ 2 f = 0 \qquad \\ \frac{1}{r^2}\frac{\partial}{\partial r}(r^2 \frac{\partial f}{\partial r}) + \frac{1}{r^2sin\theta}\frac{\partial}{\partial \theta}(sin\theta \frac{\partial f}{\partial \theta}) + \frac{1}{r^2 sin^2 \theta}\frac{\partial^2 f}{\partial \varphi^2} = \bigtriangledown^2 f = 0 \\ \qquad \\ r21r(r2rf)+r2sinθ1θ(sinθθf)+r2sin2θ1φ22f=2f=0

  1. 目标就是解拉普拉斯方程,就先分离r部分和角度 θ 和 φ \theta和\varphi θφ部分

f ( r , θ , φ ) = R ( r ) Y ( θ , φ ) \qquad \\ f(r, \theta, \varphi) = R(r)Y(\theta, \varphi) \\ \qquad \\ f(r,θ,φ)=R(r)Y(θ,φ)

其中:
R ( r ) R(r) R(r)表示距离
Y ( θ , φ ) Y(\theta, \varphi) Y(θ,φ)即球谐函数

  1. 把4代入3中

带入上面的拉普拉斯方程的 ∂ f \partial{f} f
1 r 2 ∂ ∂ r ( r 2 ∂ [ R ( r ) Y ( θ , φ ) ] ∂ r ) + 1 r 2 s i n θ ∂ ∂ θ ( s i n θ ∂ [ R ( r ) Y ( θ , φ ) ] ∂ θ ) + 1 r 2 s i n 2 θ ∂ 2 [ R ( r ) Y ( θ , φ ) ] ∂ φ 2 = ▽ 2 [ R ( r ) Y ( θ , φ ) ] \qquad \\ \frac{1}{r^2}\frac{\partial}{\partial r}(r^2 \frac{\partial [R(r)Y(\theta, \varphi)]}{\partial r}) + \frac{1}{r^2sin\theta}\frac{\partial}{\partial \theta}(sin\theta \frac{\partial [R(r)Y(\theta, \varphi)]}{\partial \theta}) + \frac{1}{r^2 sin^2 \theta}\frac{\partial^2 [R(r)Y(\theta, \varphi)]}{\partial \varphi^2} = \bigtriangledown^2 [R(r)Y(\theta, \varphi)] \\ \qquad \\ r21r(r2r[R(r)Y(θ,φ)])+r2sinθ1θ(sinθθ[R(r)Y(θ,φ)])+r2sin2θ1φ22[R(r)Y(θ,φ)]=2[R(r)Y(θ,φ)]
化简后为:
1 R ( r ) d d r ( r 2 d R ( r ) d r ) + 1 s i n ( θ ) Y ( θ , φ ) ∂ ∂ θ ( s i n ( θ ) ∂ Y ( θ , φ ) ∂ θ ) + 1 Y ( θ , φ ) 1 s i n 2 ( θ ) ∂ 2 Y ( θ , φ ) ∂ φ 2 = r 2 R ( r ) Y ( θ , φ ) ▽ 2 [ R ( r ) Y ( θ , φ ) ] = 0 \qquad \\ \frac{1}{R(r)} \frac{d}{dr}(r^2 \frac{dR(r)}{dr}) + \frac{1}{sin(\theta) Y(\theta, \varphi)} \frac{\partial }{\partial \theta} (sin(\theta) \frac{\partial Y(\theta, \varphi)}{\partial \theta}) + \frac{1}{Y(\theta, \varphi)} \frac{1}{sin^2 (\theta)} \frac{\partial^2 Y(\theta, \varphi)}{\partial \varphi^2} = \frac{r^2}{R(r)Y(\theta, \varphi)} \bigtriangledown^2 [R(r)Y(\theta, \varphi)] = 0 \qquad \\ R(r)1drd(r2drdR(r))+sin(θ)Y(θ,φ)1θ(sin(θ)θY(θ,φ))+Y(θ,φ)1sin2(θ)1φ22Y(θ,φ)=R(r)Y(θ,φ)r22[R(r)Y(θ,φ)]=0
这时候,我们希望能把只有 R ( r ) R(r) R(r)的距离部分和只有 Y ( θ , φ ) Y(\theta, \varphi) Y(θ,φ)的球谐函数部分分离开:
1 R ( r ) d d r ( r 2 d R ( r ) d r ) = − 1 s i n ( θ ) Y ( θ , φ ) ∂ ∂ θ ( s i n ( θ ) ∂ Y ( θ , φ ) ∂ θ ) − 1 Y ( θ , φ ) 1 s i n 2 ( θ ) ∂ 2 Y ( θ , φ ) ∂ φ 2 \qquad \\ \frac{1}{R(r)} \frac{d}{dr}(r^2 \frac{dR(r)}{dr}) = - \frac{1}{sin(\theta) Y(\theta, \varphi)} \frac{\partial }{\partial \theta} (sin(\theta) \frac{\partial Y(\theta, \varphi)}{\partial \theta}) - \frac{1}{Y(\theta, \varphi)} \frac{1}{sin^2 (\theta)} \frac{\partial^2 Y(\theta, \varphi)}{\partial \varphi^2} \qquad \\ R(r)1drd(r2drdR(r))=sin(θ)Y(θ,φ)1θ(sin(θ)θY(θ,φ))Y(θ,φ)1sin2(θ)1φ22Y(θ,φ)
如果这个等式成立,等式两边需要等于同一个常数 c c c,而这个常数 c c c我们设置为 l ( l + 1 ) l(l+1) l(l+1),之所以要这么变换,是因为下面需要用这个来构造 l l l阶连带勒让德方程
1 R ∂ ∂ r ( r 2 ∂ R ∂ r ) = − 1 Y ∂ ∂ θ ( s i n θ ∂ Y ∂ θ ) − 1 Y s i n 2 θ ∂ 2 Y ∂ φ 2 = l ( l + 1 ) \qquad \\ \frac{1}{R}\frac{\partial}{\partial r}(r^2 \frac{\partial R}{\partial r}) = - \frac{1}{Y}\frac{\partial}{\partial \theta}(sin \theta \frac{\partial Y}{\partial \theta}) - \frac{1}{Y sin^2 \theta}\frac{\partial^2 Y}{\partial \varphi^2} = l(l+1) \\ \qquad \\ R1r(r2rR)=Y1θ(sinθθY)Ysin2θ1φ22Y=l(l+1)

  1. 变成两个部分的方程

{ ∂ ∂ r ( r 2 ∂ R ∂ r ) − l ( l + 1 ) = 0 1 s i n θ ∂ ∂ θ ( s i n θ ∂ Y ∂ θ ) + 1 s i n 2 θ ∂ 2 Y ∂ φ 2 + l ( l + 1 ) Y = 0 \qquad \\ \begin{cases} \frac{\partial}{\partial r}(r^2 \frac{\partial R}{\partial r}) - l(l+1) = 0 \\ \qquad \\ \frac{1}{sin \theta}\frac{\partial}{\partial \theta}(sin \theta \frac{\partial Y}{\partial \theta}) + \frac{1}{sin^2 \theta}\frac{\partial^2 Y}{\partial \varphi^2} + l(l+1)Y = 0 \end{cases} \\ \qquad \\ r(r2rR)l(l+1)=0sinθ1θ(sinθθY)+sin2θ1φ22Y+l(l+1)Y=0
第一个方程式距离的方程,第二个方程式角度的方程

  1. 先只关心角度部分,也称为球函数方程,分离变量 θ \theta θ φ \varphi φ

Y ( θ , φ ) = Θ ( θ ) Φ ( φ ) \qquad \\ Y(\theta, \varphi) = \Theta(\theta)\Phi(\varphi) \\ \qquad \\ Y(θ,φ)=Θ(θ)Φ(φ)

  1. 把7代入6中,可以得到 Φ 和 Θ \Phi和\Theta ΦΘ的方程

1 s i n θ ∂ ∂ θ ( s i n θ ∂ [ Θ ( θ ) Φ ( φ ) ] ∂ θ ) + 1 s i n 2 θ ∂ 2 [ Θ ( θ ) Φ ( φ ) ] ∂ φ 2 + l ( l + 1 ) [ Θ ( θ ) Φ ( φ ) ] = 0 \frac{1}{sin \theta}\frac{\partial}{\partial \theta}(sin \theta \frac{\partial [\Theta(\theta)\Phi(\varphi)]}{\partial \theta}) + \frac{1}{sin^2 \theta}\frac{\partial^2 [\Theta(\theta)\Phi(\varphi)]}{\partial \varphi^2} + l(l+1)[\Theta(\theta)\Phi(\varphi)] = 0 sinθ1θ(sinθθ[Θ(θ)Φ(φ)])+sin2θ1φ22[Θ(θ)Φ(φ)]+l(l+1)[Θ(θ)Φ(φ)]=0
化简为:
Θ Θ ⋅ Φ ⋅ ∂ 2 Φ ∂ φ 2 = − l ( l + 1 ) ⋅ s i n 2 θ − s i n θ ⋅ Φ Θ ⋅ Φ ⋅ ∂ ( s i n θ ∂ Θ ∂ θ ) ∂ θ \frac{\Theta}{\Theta \cdot \Phi} \cdot \frac{\partial ^2 \Phi}{\partial \varphi^2} = - l(l+1) \cdot sin^2 \theta - \frac{sin \theta \cdot \Phi}{\Theta \cdot \Phi} \cdot \frac{\partial (sin \theta \frac{\partial \Theta}{\partial \theta})}{\partial \theta} ΘΦΘφ22Φ=l(l+1)sin2θΘΦsinθΦθ(sinθθΘ)
继续化简,并分离 Θ \Theta Θ Φ \Phi Φ在等式左右两边:
1 Φ ⋅ ∂ 2 Φ ∂ φ 2 = − l ( l + 1 ) ⋅ s i n 2 θ − s i n θ Θ ⋅ ∂ ( s i n θ ∂ Θ ∂ θ ) ∂ θ \frac{1}{\Phi} \cdot \frac{\partial ^2 \Phi}{\partial \varphi^2} = - l(l+1) \cdot sin^2 \theta - \frac{sin \theta}{\Theta} \cdot \frac{\partial (sin \theta \frac{\partial \Theta}{\partial \theta})}{\partial \theta} Φ1φ22Φ=l(l+1)sin2θΘsinθθ(sinθθΘ)
左边仅仅关于角度 Θ \Theta Θ,右边仅仅关于角度 Φ \Phi Φ,等式设为等于参数 λ \lambda λ:

{ 1 Φ ⋅ ∂ 2 Φ ∂ φ 2 = − λ l ( l + 1 ) ⋅ s i n 2 θ + s i n θ Θ ⋅ ∂ ( s i n θ ∂ Θ ∂ θ ) ∂ θ = λ \begin{cases} \frac{1}{\Phi} \cdot \frac{\partial ^2 \Phi}{\partial \varphi^2} = - \lambda \\ \qquad \\ l(l+1) \cdot sin^2 \theta + \frac{sin \theta}{\Theta} \cdot \frac{\partial (sin \theta \frac{\partial \Theta}{\partial \theta})}{\partial \theta} = \lambda \end{cases} Φ1φ22Φ=λl(l+1)sin2θ+Θsinθθ(sinθθΘ)=λ

化简后为:

{ ∂ 2 Φ ∂ φ 2 + λ Φ = 0 s i n θ ∂ ∂ θ ( s i n θ ∂ Θ ∂ θ ) + [ l ( l + 1 ) s i n 2 θ − λ ] Θ = 0 \qquad \\ \begin{cases} \frac{\partial^2 \Phi}{\partial \varphi^2} + \lambda \Phi=0 \\ \qquad \\ sin \theta \frac{\partial}{\partial \theta}(sin \theta \frac{\partial \Theta}{\partial \theta}) + [l(l+1)sin^2 \theta - \lambda]\Theta = 0 \end{cases} \\ \qquad \\ φ22Φ+λΦ=0sinθθ(sinθθΘ)+[l(l+1)sin2θλ]Θ=0

  1. 求解 Φ \Phi Φ,这也是本文用到的部分

{ λ = m 2 Φ = e i m φ \qquad \\ \begin{cases} \lambda = m^2 \\ \qquad \\ \Phi = e^{im\varphi} \end{cases} \\ \qquad \\ λ=m2Φ=eimφ

  1. 求解 Θ ,设 c o s θ = x \Theta,设cos \theta = x Θ,设cosθ=x

化简为:
( 1 − x 2 ) ∂ 2 Θ ∂ x 2 − 2 x ∂ Θ ∂ x + [ l ( l + 1 ) − m 2 1 − x 2 ] Θ = 0 \qquad \\ (1-x^2)\frac{\partial^2 \Theta}{\partial x^2} - 2x \frac{\partial \Theta}{\partial x}+[l(l+1)-\frac{m^2}{1-x^2}]\Theta = 0 \\ \qquad \\ (1x2)x22Θ2xxΘ+[l(l+1)1x2m2]Θ=0
m=0时,称 l l l次为勒让德方程

m ≠ 0 时,称为 l 次连带勒让德方程 m \neq 0时,称为l次连带勒让德方程 m=0时,称为l次连带勒让德方程

Θ ( θ ) = P l m ( c o s θ ) \Theta(\theta) = P_l^m(cos \theta) Θ(θ)=Plm(cosθ)

其中
P l m ( x ) = ( − 1 ) m ( 1 − x 2 ) m 2 2 l l ! d l + m d x l + m ( x 2 − 1 ) l P_l^m(x) = \frac{(-1)^m (1-x^2)^{\frac{m}{2}}}{2^l l!}\frac{d^{l+m}}{dx^{l+m}}(x^2-1)^l \\ \qquad \\ Plm(x)=2ll!(1)m(1x2)2mdxl+mdl+m(x21)l

  1. 复数通解为:

Y ( θ , φ ) = ∑ l = 0 ∞ ∑ k = − l l P l k ( c o s θ ) e i m φ m = 0 , ± 1 , ± 2 , … \qquad \\ Y(\theta, \varphi) = \sum_{l=0}^{\infty}\sum_{k=-l}^{l}P_l^k (cos \theta)\hspace{1mm}e^{im\varphi} \hspace{4mm}m=0,\pm1,\pm2,\dots \\ \qquad \\ Y(θ,φ)=l=0k=llPlk(cosθ)eimφm=0,±1,±2,

  1. 一般性的 l 次 m 阶的表达式为,就是所有 i t e m s 中的一个,当 l 取无穷大, Y l m 能拟合 f ( θ , φ ) 一般性的l次m阶的表达式为,就是所有items中的一个,当l取无穷大,Y_{lm}能拟合f(\theta, \varphi) 一般性的lm阶的表达式为,就是所有items中的一个,当l取无穷大,Ylm能拟合f(θ,φ)

Y l m ( θ , φ ) = P l m ( c o s θ ) e i m φ \qquad \\ Y_{lm}(\theta, \varphi) = P_{lm}(cos \theta)\hspace{1mm}e^{im\varphi} \\ \qquad Ylm(θ,φ)=Plm(cosθ)eimφ

  1. 归一化一般性表达:

Y l m ( θ , φ ) = K l m Y l m ( θ , φ ) \qquad \\ Y_l^m(\theta, \varphi) = K_l^m Y_{lm}(\theta, \varphi) \\ \qquad \\ Ylm(θ,φ)=KlmYlm(θ,φ)
K l m = 2 l + 1 4 π ( l − ∣ m ∣ ) ! ( l + ∣ m ∣ ) ! K_l^m = \sqrt{\frac{2l+1}{4\pi}\frac{(l-|m|)!}{(l+|m|)!}} \\ \qquad \\ Klm=4π2l+1(l+m)!(lm)!

  1. 球谐函数组用归一化一般表达式可以表示为:

{ Y l m ( θ , φ ) } = { Y 0 0 , Y 1 − 1 , Y 1 0 , Y 1 1 , Y 2 − 2 , Y 2 − 1 , Y 2 0 , Y 2 1 , Y 2 2 , ⋯   } \qquad \\ \{Y_l^m(\theta, \varphi)\}=\{Y_0^0, Y_1^{-1},Y_1^{0},Y_1^{1}, Y_2^{-2},Y_2^{-1},Y_2^{0},Y_2^{1},Y_2^{2}, \dotsb \} \\ \qquad \\ {Ylm(θ,φ)}={Y00,Y11,Y10,Y11,Y22,Y21,Y20,Y21,Y22,}

  1. 任一球面函数 f ( θ , φ ) f(\theta, \varphi) f(θ,φ)可以用“正交归一化球谐函数组”表达:

f ( θ , φ ) = ∑ l = 0 ∞ ∑ m = − l l C l m Y l m ( θ , φ ) f(\theta, \varphi) = \sum_{l=0}^{\infty}\sum_{m=-l}^{l}\hspace{1mm}C_l^m\hspace{1mm}Y_l^m(\theta, \varphi) f(θ,φ)=l=0m=llClmYlm(θ,φ)
其中 C l m 和 Y l m 类似,该过程类似傅里叶变换,称之为广义傅里叶变换,而 C l m 称之为广义傅里叶系数 其中C_l^m和Y_l^m类似,该过程类似傅里叶变换,称之为广义傅里叶变换,而C_l^m称之为广义傅里叶系数 其中ClmYlm类似,该过程类似傅里叶变换,称之为广义傅里叶变换,而Clm称之为广义傅里叶系数

{ Y l m ( θ , φ ) } = { Y 0 0 , Y 1 − 1 , Y 1 0 , Y 1 1 , Y 2 − 2 , Y 2 − 1 , Y 2 0 , Y 2 1 , Y 2 2 , ⋯   } \qquad \\ \{Y_l^m(\theta, \varphi)\}=\{Y_0^0, Y_1^{-1},Y_1^{0},Y_1^{1}, Y_2^{-2},Y_2^{-1},Y_2^{0},Y_2^{1},Y_2^{2}, \dotsb \} {Ylm(θ,φ)}={Y00,Y11,Y10,Y11,Y22,Y21,Y20,Y21,Y22,}
{ C l m } = { C 0 0 , C 1 − 1 , C 1 0 , C 1 1 , C 2 − 2 , C 2 − 1 , C 2 0 , C 2 1 , C 2 2 , ⋯   } \qquad \\ \{C_l^m\}=\{C_0^0, C_1^{-1},C_1^{0},C_1^{1}, C_2^{-2},C_2^{-1},C_2^{0},C_2^{1},C_2^{2}, \dotsb \}\\ \qquad \\ {Clm}={C00,C11,C10,C11,C22,C21,C20,C21,C22,}

  1. 注意一下形式, l → ∞ , 才会让 C l m ∗ Y l m ( θ , φ ) → f ( θ , φ ) , m ∈ [ − l , l ] 注意一下形式,l \rightarrow \infty, 才会让C_l^m*Y_l^m(\theta, \varphi) \rightarrow f(\theta, \varphi), m\in [-l, l] 注意一下形式,l,才会让ClmYlm(θ,φ)f(θ,φ),m[l,l]

球谐函数系 → 次数 球谐函数系数 ( 广义傅里叶系数 ) 球谐函数基底 l = 0 C 0 0 Y 0 0 l = 1 C 1 − 1 , C 1 0 , C 1 1 Y 1 − 1 , Y 1 0 , Y 1 1 l = 2 C 2 − 2 , C 2 − 1 , C 2 0 , C 2 1 , C 2 2 Y 2 − 2 , Y 2 − 1 , Y 2 0 , Y 2 1 , Y 2 2 ⋮ ⋮ ⋮ l = ∞ C ∞ − ∞ , C ∞ − ∞ + 1 , … , C ∞ 0 , … , C ∞ ∞ − 1 , C ∞ ∞ Y ∞ − ∞ , Y ∞ − ∞ + 1 , … , Y ∞ 0 , … , Y ∞ ∞ − 1 , Y ∞ ∞ 一般选取 l 为一个有限值,例如 l = 1 : f ( θ , φ ) ≈ C 0 0 Y 0 0 + C 1 − 1 Y 1 − 1 + C 1 0 Y 1 0 + C 1 1 Y 1 1 f ( θ , φ ) ≈ a Y 0 0 + b Y 1 − 1 + c Y 1 0 + d Y 1 1 \qquad \\ 球谐函数系\quad \rightarrow \begin{array}{l|l|l|l|} &次数 &球谐函数系数(广义傅里叶系数) &球谐函数基底 \\ \qquad \\ &l=0 &C_0^0 &Y_0^0 \\ \qquad \\ &l=1 &C_1^{-1}, C_1^0, C_1^1 &Y_1^{-1}, Y_1^0, Y_1^1 \\ \qquad \\ &l=2 &C_2^{-2},C_2^{-1},C_2^0,C_2^1,C_2^2 &Y_2^{-2},Y_2^{-1},Y_2^0,Y_2^1,Y_2^2 \\ &\vdots &\vdots &\vdots \\ &l=\infty &C_\infty^{-\infty},C_{\infty}^{-\infty+1},\dots,C_{\infty}^0,\dots,C_{\infty}^{\infty-1},C_{\infty}^{\infty} &Y_\infty^{-\infty},Y_{\infty}^ {-\infty+1},\dots,Y_{\infty}^0,\dots,Y_ {\infty}^{\infty-1},Y_{\infty}^{\infty} \\ \end{array}\\ \qquad \\ 一般选取l为一个有限值,例如l=1:\\ \qquad \\ \begin{aligned} f(\theta, \varphi) &\approx C_0^0Y_0^0 + C_1^{-1}Y_1^{-1}+C_1^0 Y_1^0 + C_1^1 Y_1^1 \\ \qquad \\ f(\theta, \varphi) &\approx aY_0^0 + bY_1^{-1} + cY_1^0 + dY_1^1 \\ \qquad \\ \end{aligned} 球谐函数系次数l=0l=1l=2l=球谐函数系数(广义傅里叶系数)C00C11,C10,C11C22,C21,C20,C21,C22C,C+1,,C0,,C1,C球谐函数基底Y00Y11,Y10,Y11Y22,Y21,Y20,Y21,Y22Y,Y+1,,Y0,,Y1,Y一般选取l为一个有限值,例如l=1f(θ,φ)f(θ,φ)C00Y00+C11Y11+C10Y10+C11Y11aY00+bY11+cY10+dY11

  1. 优良特性:
  • 标准正交性:

    { ∫ Y i Y j = 1 i = j ∫ Y i Y j = 0 i ≠ j \begin{cases} \int Y_i Y_j=1 & i=j \\ \quad \\ \int Y_i Y_j=0 & i\neq j \end{cases} YiYj=1YiYj=0i=ji=j
    Y i 和 Y j 是圆谐函数 , 也称基底,就是角度部分 \qquad Y_i和Y_j是圆谐函数,也称基底,就是角度部分 YiYj是圆谐函数,也称基底,就是角度部分

    函数系 ψ j k ( r , ϕ ) 在单位圆 ( 0 ⩽ r ⩽ , 0 ⩽ ϕ ⩽ 2 π ) 内正交 \qquad函数系\psi_{jk}(r,\phi)在单位圆(0\leqslant r \leqslant,0 \leqslant \phi \leqslant 2\pi)内正交 函数系ψjk(r,ϕ)在单位圆(0r,0ϕ2π)内正交

  • 旋转等变性:

    g ( x ) = f ( T r a n s f o r m [ x ] ) = T r a n s f o r m [ f ( x ) ] g(x)=f(Transform[x]) = Transform[f(x)] g(x)=f(Transform[x])=Transform[f(x)]

  • 函数乘积的积分等于其圆谐系数向量的点积:

    ∫ ψ j k ( ⋅ ) ψ n m ( ⋅ ) d x = ∑ j = 0 J ∑ n = 0 N C j k ∗ C n m \qquad \\ \int \psi_{jk}(\cdot)\psi_{nm}(\cdot)dx = \sum_{j=0}^{J}\sum_{n=0}^{N}C_j^k * C_n^m \\ \qquad \\ ψjk()ψnm()dx=j=0Jn=0NCjkCnm

如何理解球谐函数?
球谐函数的基函数空间形状
如何看这幅图?

第一行对应的就是 C 0 0 Y 0 0 ( θ , φ ) C^0_0 Y^0_0 (\theta, \varphi) C00Y00(θ,φ),意思就是这一组正交基可以拟合出球面上任何一个点,如果是正方体,这种就没法拟合了
第二行对应的是 C 1 − 1 Y 1 − 1 ( θ , φ ) , C 1 0 Y 1 0 ( θ , φ ) , C 1 1 Y 1 1 ( θ , φ ) C^{-1}_1 Y^{-1}_1 (\theta, \varphi), C^{0}_1 Y^{0}_1 (\theta, \varphi), C^{1}_1 Y^{1}_1 (\theta, \varphi) C11Y11(θ,φ),C10Y10(θ,φ),C11Y11(θ,φ),这三组正交基在空间的形状如图所示
第三行第四行以此类推

这些波瓣的作用是什么

l l l决定了正交基的组数和波瓣的数目
1个波瓣只能拟合球面的点
4个波瓣3组正交基,可以拟合范围变成2组
6个波瓣5组正交基,可以拟合范围为:
5组
球谐函数的作用?
计算机通过存储正交基的系数,从而压缩位置信息(例如环境光,即三维模型实际上是一个没有贴图的位置坐标,通过球谐函数记忆环境光的系数,从而简化过程)。
高阶球谐函数的计算压力依然很大,所以不适用于高频信号处理。

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值