这篇文章将会翻译一篇来自布莱金理工学院的论文 Towards Real-Time NavMesh Generation Using GPU Accelerated Scene Voxelization的前一小部分。传统的NavMesh生成是在CPU上做的体素化,这篇文章主要讨论的是如何将这部分搬到GPU上做,从而起到加速计算的效果。不过本文只翻译前半部分,前一小部分概述了整个Nav Mesh网格生成的原理。
本次翻译最主要的目的是自己的学习,所以如果翻译得不好,大可不必过多指责。
1 简介
传统的虚拟世界(比如3D游戏)上的寻路通常会使用寻路网格(Nav Mesh)达成目标,这是一个3D地形上的2D的凸多边形组成的网络,用来表示那些表面是可走的。在Nav Mesh上,可以使用一些图形搜索算法,比如A *算法来查找一条从一个表面到另一个表面的最短路径。有许多方式可以生成这个Nav Mesh,这其中,许多游戏引擎,尤其是Unity,CryEngine,Unreal,还有许多游戏,都使用了一种场景体素化(Scene Voxelization)的技术去生成Nav Mesh,这是一个将三角面转化成体素的方法,目的是在将寻路代理(pathFinding agent)的体积纳入考虑范围的同时评估哪个场景上哪些表面是可达的。这个过程是非常消耗计算资源的。与此同时,在其他领域,比如基于体素的锥形光线追踪(Voxel Cone Tracing for Global Illumination)证明了能够利用图形硬件的并行化加快计算速度。Recast是一个流行的库,用来在任意多边形表面上利用场景体素化技术生成寻路网格。但这个过程是在CPU上计算的,这就提供了将计算过程移植到GPU上从而提升性能的可能性。这篇论文将展示一种基于GPU的体素化技术,从而在Recast种替换它的CPU计算过程。
2 背景和相关工作
Nav Mesh可以从表示游戏世界的体素中生成。把游戏世界看作是体素的好处是对于那些不在同一个网格上但是重叠或相交的三角面依然可以被连接成一个表面。另一个好处是对于场景中的一些空隙,比如很低的天花板,或者悬浮的集合体,可以很容易地被纳入计算。
2.1 Recast
由Mikko Mononen开发的Recast是一个用于生成Nav Mesh的最先进的跨平台库,它被许多游戏引擎引用,并被kethera1和Unreal等平台扩展。Recast通过输入任意的3D多边形来生成Nav Mesh,比如一个游戏关卡。输入的多边形几何没有任何限制。为了能够从这些输入中生成Nav Mesh,这些几何必须被光栅化为体素。这里光栅化跟体素化是一个意思,同时在本篇文章当中交叉使用。一个标准的Nav Mesh生成管线中大致可分成以下一个步骤:
2.1.1 输入准备
为了能够光栅化输入的几何体,必须做一些准备工作。在这个阶段,每一个三角面都将被添加一个标记,用来指示它上面是否可行走。一个三角面当它的倾斜角小于一个既定的阈值时,将被标记为可行走的。这可以通过比较三角面的法线的Y坐标和角度阈值的余弦值做到。
2.1.2 光栅化
在光栅化阶段,一个高度场将被生成。一个高度场是一个游程编码(Run-Length encoding)的体素域,包含了一个(XZ)二维数组,每个元素记录着Y轴方向上的一个区间(span)列表。一个区间定义了Y轴方向上同类型的体素集合(比如都是可行走的,或者都是不可行走的)。这些光栅化算法是基于CPU的,原理是将三角形分割成多边形,这些多边形于垂直体素列的边缘相交,并创建一个从最低点体素到最高点体素长成的空间。
2.1.3 过滤
光栅化阶段产生的高度场在被用作生成Nav Mesh之前需要一些额外的过滤操作。在过滤阶段,三种过滤方法会运行,以此确定最终的高度场。
- 过滤毗邻的障碍物 - 如果一个区间有一个毗邻的区间,毗邻的区间的高度是可行走范围内的,那么这个区间就被标记为可行走的。这个过滤使得一些小型的障碍物或楼梯变得可行走。
- 过滤岩壁区间 - 一个岩壁区间将被标记为不可行走的。一个区间如果它的任何一个邻居的高度比当前区间高度低很多(whose heights are too far down),那么这个区间就标记为不可行走的。
- 过滤低空悬浮区间 - 一个区间如果没有足够的高度让寻路代理通过,那么这个区间就被标记为不可行走的。
2.1.4 区域的产生
一个高度场通过体素化和过滤之后,就可以被简化成一片区域(region),这片区域就表示该场景中能够行走的范围。在Recast中,提供了三种产生区域的方法,这三种方法各有利弊。
2.1.5 轮廓 - 和 多边形网格的产生
一旦区域生成,就可以进一步提取出更简化的轮廓了。在这个阶段,一个最大误差的阈值指定了轮廓线和区域边缘的区别程度。还有一个阈值指定轮廓的最大长度。任何长度大于阈值的轮廓部分都将会被剔除。
这五张图分别代表了上述的五个过程。