市价单||限价单||主动买||主动卖

证券市场常常有上述几个概念。

限价单:确定一个卖出or买入价格,单子会挂在委托列表,不会马上成交。

市价单:单子会马上与order book上某一笔单子成交。

一笔交易,一定有一方是限价单,另一方是市价单。

主动买:在API中,也就是type:buy,指一笔交易中,下市价单的那个是买入。

主动卖:同理,交易中,下市价单让交易立马成交的一方,是主动卖出。

.
.
.
2019-03-19 21:41:18写于上海

<think>好的,我现在需要帮用户解决如何通过调用OKX的WebSocket API实现合约和现货在15分钟内涨跌幅达到15点时自动下,并在盈利或亏损2%时自动平仓的问题。首先,我得理清楚用户的具体需求。 用户希望当价格在15分钟内波动15个点时自动触发下,然后在盈利或亏损2%时平仓。这里有几个关键点需要注意:首先,用户提到的“15点”需要明确是15个基本点还是价格的具体变动,比如如果是BTC,15点可能指的是15美元,但需要确认。不过可能用户是指价格的绝对值变动,比如从100涨到115。其次,合约和现货的处理方式可能不同,尤其是在保证金和杠杆方面,但用户可能希望两者都适用类似的逻辑。 接下来,我需要考虑如何通过OKX的API来实现。OKX提供了WebSocket API用于实时数据获取,以及REST API用于下和平仓。因此,大致的步骤应该是:通过WebSocket订阅实时价格数据,当检测到符合15分钟15点的波动时,触发下操作,然后监控该订的盈亏情况,达到2%时平仓。 首先,需要确定订阅哪些数据。对于现货和合约,可能需要不同的频道。比如,现货的 tickers 和合约的 tickers。然后,设置一个时间窗口,持续监测15分钟内的价格变化。这可能需要维护一个数据结构来存储最近15分钟的价格数据,或者使用滑动窗口来计算最高价和最低价,判断是否达到15点的波动。 然后,当波动条件满足时,自动下。这里需要考虑下的方向,比如如果是涨幅达到15点,可能入;跌幅则出。但用户可能需要明确是涨还是跌触发,或者双向触发。此外,合约交易可能需要设置杠杆,并且区分开多仓和空仓。 接下来是止盈止损的问题。盈利2%和亏损2%的触发条件需要根据持仓成本价来计算。当市价达到成本价的102%时止盈,98%时止损。这需要持续监控该订的价格变化,或者利用OKX的止损订功能,在下时直接设置止盈止损参数,可能更高效,减少延迟。 现在,考虑技术实现的具体步骤: 1. 连接OKX的WebSocket API,订阅所需的ticker数据。对于现货和合约,频道可能不同,比如“SPOT”和“SWAP”。 2. 维护一个数据结构,比如字典或队列,记录每个交易对最近15分钟的最高价和最低价,或者存储每个时间点的价格,以便计算窗口内的波动。 3. 当检测到最高价 - 最低价 >=15点时,触发下逻辑。这里需要确定价格波动的计算方式,比如从当前时间往前推15分钟内的最高和最低价之差是否超过15点。 4. 下时,确定交易方向。例如,如果当前价格高于15分钟前的价格+15点,则可能做多,反之做空。但需要用户的具体策略,这里可能需要进一步确认,但用户可能希望无论涨跌,只要波动达到15点就下,方向可能根据波动方向决定。 5. 使用REST API发送下请求,包括市价限价,设置交易数量和类型(入/出)。对于合约,还需要设置杠杆、保证金模式等参数。 6. 订成交后,记录成交均价,作为成本价。然后计算止盈价和止损价,即成本价的102%和98%。 7. 对于止盈止损,有两种方式:一种是主动监控,通过WebSocket持续接收该交易对的价格,当价格触发条件时调用平仓接口;另一种是利用OKX的止损订功能,在下时同时设置止盈止损订,这样可以在服务器端自动执行,减少延迟和风险。后者可能更可靠,因为即使本地程序崩溃,订仍然有效。 关于具体实现,需要注意: - 时间窗口的处理:需要确保准确计算15分钟内的价格波动。可以使用定时器每隔一定时间(比如每分钟)检查一次,或者在每次收到新的价格数据时更新时间窗口的数据,移除超过15分钟的部分。 - 价格存储:可能需要存储时间戳和对应的价格,以便过滤出最近15分钟的数据。 - 网络和错误处理:WebSocket可能断开,需要实现重连机制。同时,API调用可能有频率限制,需遵守OKX的API规则。 - 订管理:需要跟踪每个订的状态,避免重复下或遗漏平仓。 - 手续费和滑点:在计算盈利2%时需要考虑手续费和实际成交价格的滑点,可能需要预留一定的缓冲空间。 此外,用户可能需要区分现货和合约的不同处理,比如合约的平仓可能需要区分平多还是平空,而现货的出则是直接出。 最后,需要提醒用户风险,如高频交易可能带来的高手续费、市场波动导致的条件触发频繁,以及API使用的安全措施,如API密钥的加密存储,避免泄露。</think>以下是分步实现方案,请务必注意API安全和市场风险: 一、准备工作 1. 开通OKX API - 登录OKX账户 → [API管理]创建新API - 勾选「交易」权限,设置IP白名 - 妥善保存API Key和Secret 二、核心流程架构 $$流程示意图$$ $$ \begin{array}{ccc} \text{WebSocket连接} & → & \text{价格监控模块} \\ & ↓ & \\ \text{交易信号触发} & → & \text{订管理模块} \\ & ↓ & \\ \text{止盈止损模块} & ← & \text{持仓监控} \end{array} $$ 三、代码模块实现(Python示例) 1. WebSocket连接模块 ```python from websockets import connect import json import asyncio async def subscribe_ws(): async with connect("wss://ws.okx.com:8443/ws/v5/public") as ws: # 订阅BTC-USDT现货和永续合约 sub_msg = { "op": "subscribe", "args": [ {"channel": "tickers", "instId": "BTC-USDT"}, {"channel": "tickers", "instId": "BTC-USD-SWAP"} ] } await ws.send(json.dumps(sub_msg)) while True: resp = await ws.recv() data = json.loads(resp) process_data(data) # 触发数据处理 ``` 2. 价格波动检测(核心算法) ```python from collections import deque from datetime import datetime, timedelta price_history = { "BTC-USDT": deque(maxlen=900), # 15分钟数据(假设1秒1个数据点) "BTC-USD-SWAP": deque(maxlen=900) } def check_volatility(instId): now = datetime.now() # 过滤15分钟内数据 valid_data = [p for t, p in price_history[instId] if now - t <= timedelta(minutes=15)] if len(valid_data) >= 2: max_price = max(valid_data) min_price = min(valid_data) return (max_price - min_price) >= 15 # 15点波动 return False ``` 3. 交易执行模块(需配合REST API) ```python import hashlib import hmac import time async def place_order(instId, side): timestamp = str(int(time.time())) msg = timestamp + "POST/api/v5/trade/order" signature = hmac.new(secret_key.encode(), msg.encode(), hashlib.sha256).hexdigest() order_params = { "instId": instId, "tdMode": "cross" if "SWAP" in instId else "cash", "side": side, "ordType": "market", "sz": "0.01" # 根据实际资金计算 } # 发送市价 response = requests.post( "https://www.okx.com/api/v5/trade/order", headers={ "OK-ACCESS-KEY": api_key, "OK-ACCESS-SIGN": signature, "OK-ACCESS-TIMESTAMP": timestamp }, json=order_params ) return response.json() ``` 四、风控机制实现 1. 止盈止损策略(示例) ```python def calculate_exit_prices(entry_price): take_profit = entry_price * 1.02 # 盈利2% stop_loss = entry_price * 0.98 # 亏损2% return take_profit, stop_loss async def monitor_position(order_id): while True: position = get_position(order_id) # 调用持仓接口 current_price = get_market_price() if current_price >= position['take_profit'] or \ current_price <= position['stop_loss']: close_position(order_id) break await asyncio.sleep(1) # 每秒检查一次 ``` 五、注意事项 1. 时间同步 - 必须与OKX服务器时间同步,误差需小于30秒 2. 订类型优化 - 建议使用`post_only`避免滑点 - 合约订需设置杠杆参数: ```python "lever": "10" # 根据风险承受能力设置 ``` 3. 异常处理 - 增加重试机制(建议3次重试) - 设置每日最大亏损限额 - 实施交易频率限制(OKX API限频为20次/2秒) 4. 日志记录 - 建议记录完整交易流水: ```python logging.basicConfig( filename='trading.log', format='%(asctime)s - %(levelname)s - %(message)s' ) ``` 完整实现需考虑:资金费率、强平风险、网络延迟补偿等复杂因素,建议先用模拟账户测试。实际生产环境建议使用OKX提供的SDK(v5 API)进行开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值