InternLM实战营 RAG助手茴香豆

RAG 概述

RAG技术,通过检索与用户输入相关的信息片段,并结合外部知识库来生成更准确、更丰富的回答。解决 LLMs 在处理知识密集型任务时可能遇到的挑战, 如幻觉、知识过时和缺乏透明、可追溯的推理过程等。提供更准确的回答、降低推理成本、实现外部记忆。

RAG属于LLM模型的优化方法之一,其他优化方法包括Prompt engineering和Fine-tuning。并且虽然其在2020年才由Meta提出,但是其发展十分迅猛,已经产生了Naive GAG,Advanced GAG和Modular RAG等技术路线。

实战任务

1. 在茴香豆 Web 版中创建自己领域的知识问答助手

根据教程视频零编程玩转大模型,学习茴香豆部署群聊助手可以较为轻松的完成创建,且效果如图。

可以看出,茴香豆可以根据设置的拒答流程,针对一些有价值的问题基于数据库进行回复,而针对一些闲聊等发言,可以进行识别后给出一些附和回答,而不用到数据库中进行查询,这样提高了资源的使用效率,对于我们个人而言,在解决信息过载的问题方面也具有很大前景。

同时,茴香豆还支持零编程接入微信和飞书。教程如下:

茴香豆零编程接入微信 - 知乎 (zhihu.com)

可以看出,茴香豆可以扫描屏幕上的对话内容,并进行相应的判断,并按照拒答流程进行回答。

当然其中可能隐含着一些涉及个人信息、隐私方面的安全问题,这也是在投入商业使用前需要解决的问题。

InternLM Studio 上部署茴香豆技术助手

根据教程即可完成相应的部署

Tutorial/huixiangdou at camp2 · InternLM/Tutorial (github.com)

可以看出,针对"huixiangdou是什么?"这个问题,茴香豆给出了相应的回答,并且给出的链接也是可以打开的。

可以看出,针对“茴香豆怎么部署到微信群”这个问题,茴香豆可以给出较为详细的部署步骤以及一些注意事项。

然而针对“今天天气怎么样”这个问题,茴香豆可以判断出这个问题属于闲聊的类型,并没有进行回复。

同时从中也可以看出茴香豆对相关问题判断的依据,可以增强大模型的可解释性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值