RAG 概述
RAG技术,通过检索与用户输入相关的信息片段,并结合外部知识库来生成更准确、更丰富的回答。解决 LLMs 在处理知识密集型任务时可能遇到的挑战, 如幻觉、知识过时和缺乏透明、可追溯的推理过程等。提供更准确的回答、降低推理成本、实现外部记忆。
RAG属于LLM模型的优化方法之一,其他优化方法包括Prompt engineering和Fine-tuning。并且虽然其在2020年才由Meta提出,但是其发展十分迅猛,已经产生了Naive GAG,Advanced GAG和Modular RAG等技术路线。
实战任务
1. 在茴香豆 Web 版中创建自己领域的知识问答助手
根据教程视频零编程玩转大模型,学习茴香豆部署群聊助手可以较为轻松的完成创建,且效果如图。
可以看出,茴香豆可以根据设置的拒答流程,针对一些有价值的问题基于数据库进行回复,而针对一些闲聊等发言,可以进行识别后给出一些附和回答,而不用到数据库中进行查询,这样提高了资源的使用效率,对于我们个人而言,在解决信息过载的问题方面也具有很大前景。
同时,茴香豆还支持零编程接入微信和飞书。教程如下:
可以看出,茴香豆可以扫描屏幕上的对话内容,并进行相应的判断,并按照拒答流程进行回答。
当然其中可能隐含着一些涉及个人信息、隐私方面的安全问题,这也是在投入商业使用前需要解决的问题。
InternLM Studio
上部署茴香豆技术助手
根据教程即可完成相应的部署
Tutorial/huixiangdou at camp2 · InternLM/Tutorial (github.com)
可以看出,针对"huixiangdou是什么?"这个问题,茴香豆给出了相应的回答,并且给出的链接也是可以打开的。
可以看出,针对“茴香豆怎么部署到微信群”这个问题,茴香豆可以给出较为详细的部署步骤以及一些注意事项。
然而针对“今天天气怎么样”这个问题,茴香豆可以判断出这个问题属于闲聊的类型,并没有进行回复。
同时从中也可以看出茴香豆对相关问题判断的依据,可以增强大模型的可解释性。