目录
MIT’s Computer Science and Artificial Intelligence Laboratory, CSAIL
Stanford Artificial Intelligence Laboratory
National Robotics Engineering Centre (NREC)
Language Technologies Institute (LTI)
Berkeley Vision and Learning Center
Robotics and Intelligent Machines Lab
Department of Computer+Mathematical Science
CENTER FOR ADVANCED ELECTRONICS THROUGH MACHINE LEARNING (CAEML)
CCVL | Center for Cognition, Vision, and Learning
University of Illinois at Chicago UIC
佐治亚理工学院(Georgia Institute of Technology)
The Center for Machine Learning
The Laboratory for Interactive Artificial Intelligence
Artificial Intelligence Research Group
Center for Statistics and Machine Learning
Statistical Machine Learning Lab
Machine Learning - Columbia CS - Columbia University
Machine Learning and Intelligence
Computational Statistics Research Group
Intelligent Systems Laboratory,ISL
Artificial Intelligence at Edinburgh
赫特福德大学(University of Hertfordshire)
Institute for Machine Learning
The Siena College Institute for Artificial Intelligence,SCIAI
MACHINE LEARNING ADVANCED SOLUTIONS LAB
Microsoft Research Lab – Asia(MSRA)
国内
中科院
自动化所-智能感知与计算研究中心
谭铁牛博士主要从事图像处理、计算机视觉和模式识别等相关领域的研究工作,目前的研究主要集中在生物特征识别、图像视频理解和信息内容安全等三个方向。研究方向包括动态场景的计算机视觉监控、基于人的行为和生物特征的人物识别与身份鉴定以及数字多媒体数据的水印处理等。
模式识别国家重点实验室研究员和生物识别与安全技术研究中心主任,智能视觉物联网研发中心主任
李子青的研究领域包括统计模式识别与机器学习理论,以及生物特征识别、智能视频监控,图像处理与计算机视觉,图像与视频理解。 学术研究积极活跃,发表论文 200 多篇,撰写编写著作8 部,其中《图像分析中的马尔可夫随机场模型》 (Springer 1995, 2nd edition 2001, 3rd edition 2009) 被誉为"图像分析领域里程碑意义的工作的,他引超过2000次(by Google Scholar)。受Springer 之邀主编 《生物特征识别百科全书》(Encyclopedia of Biometrics, Springer 2009) 和《人脸识别手册》(Springer, 1 edition 2005, 2 edition 2011)。曾任IEEE Transactions on Pattern Analysis and Machine Intelligence 副主编,2004年来担任70余个国际学术会议大会主席、程序主席,或程序委员。
计算所
论文曾获国际会议CVPR2008大会Best Student Poster Award Runner-up奖。所发表论文被国内外同行引用7000余次(Google Scholar),领导课题组完成的人脸识别系统多次获得国内外人脸识别竞赛第一名,所完成的人脸识别研究成果获2005年度国家科技进步二等奖(第3完成人)。目前承担着国家基金委“优青”项目、面上项目、多个企业合作项目等。
主要研究方向及内容:
1、人类视觉系统启发的视觉计算模型
人类眼-脑视觉系统具有非凡的视觉能力,是研究计算机视觉以及机器学习的良好参照系。生物系统的哪些规律是值得借鉴的?如何借鉴它们以设计视觉计算模型?作为研究视觉计算模型的技术路线之一,我们期望通过借鉴脑科学、认知神经科学、认知心理学、心理物理学等领域的研究成果,提出新的更好的计算机视觉理论、方法和技术。
2、 数据驱动的统计视觉计算模型
如果说借鉴人类视觉系统建立视觉计算模型是知识驱动的方法,那么数据驱动则是建立视觉模型的第二途径。通过收集大量的图像或视频,采用无监督、半监督或有监督的统计学习方法,设计合理的优化目标,通过优化层级连接模型的结构和参数,学习能够满足数据的模型。为此,我们尤其关注基于小数据的深度模型学习,基于脏乱差弱标注数据的模型学习,模型的结构进化和迁移学习等问题。
3、人脸识别理论、方法与关键技术
人脸识别是典型的视觉难题,也是验证上述视觉计算模型的典型应用案例。为此,我们关注人脸识别模型的设计和学习方法,探讨人脸识别与其他物体识别问题的异同,研究针对不同应用场景的人脸识别关键技术和方法。
智能信息重点实验室
近年来主要研究领域为计算机视觉、模式识别、多媒体技术以及多模式人机接口。先后主持过自然科学基金重点项目、863计划等项目的研究工作。先后获得国家科技进步二等奖三项,省部级科技进步奖7项,获得国家发明专利四项,合作出版专著1本,在包括IEEE Transactions在内的国内外刊物和会议上发表论文100多篇。担任过十多个国际学术会议的程序委员会委员。
研究方向:多模式人机交互,多媒体技术,图像理解,模式识别
西电
高新波---综合业务网理论及关键技术国家重点实验室(通信与信息安全方向)
主要从事机器学习、计算智能和视觉信息处理、分析和理解以及无线通信等领域的研究工作, 发表SCI检索的论文100余篇、EI检索的论文200余篇,其中在重要国际学术期刊和会议上发表论文80余篇,申请国家发明专利20项、软件著作权12项。
国家自然科学基金重点项目“临地空间信息栅格网理论与关键技术”
国家自然科学基金重点项目“日侧冕状极光的分类及其产生机制研究”
国家自然科学基金项目“基于广义稀疏表示的异质人脸图像变换和质量评价”
中央高校基本科研业务费专项资金资助项目“综合遥感影像一体化张量分析理论方法体系与关键技术研究”
清华大学
计算机系-智能技术与系统国家重点实验室
朱军(官网介绍http://www.tsinghua.edu.cn/publish/cs/4616/2014/20141204083315548241718/20141204083315548241718_.html )
研究领域:机器学习、非参数化贝叶斯方法、最大间隔学习、数据挖掘
研究概况:研究工作围绕机器学习基础理论、算法和应用展开,注重理论与实际问题结合。针对复杂数据隐含结构的学习与利用中的共性问题,研究了结构学习及基于结构的统计学习中若干关键问题,提出:(1)最大熵判别式学习的PAC-Bayes理论与方法;(2)正则化贝叶斯推理及正则化非参数贝叶斯推理理论;(3)非参数化贝叶斯模型的最大间隔学习理论与高效算法等。针对互联网数据挖掘、社交网络分析、多模态数据融合、网络推荐等多个典型应用场景,将基础理论与实际问题结合,提出有效的计算模型和算法,包括:(1)将正则化贝叶斯推理用于解决大规模文本分类、社交网络分析、矩阵低秩分解、多模态数据融合等问题,提出高效推理算法;(2)将结构化最大熵判别式学习用于解决网络环境下信息抽取、实体关系抽取、多模态数据融合与检索等问题,建立了基于结构的网络数据抽取框架及包括StatSnowball在内的若干统计模型,获3项美国专利,研究成果已应用到微软的多个搜索引擎,包括人立方关系搜索引擎和学术搜索引擎等。
上述成果已连续多年在机器学习顶级国际会议和杂志ICML、NIPS、UAI、IJCAI、AAAI、 JMLR、PAMI等发表论文50余篇。受邀担任人工智能与模式识别顶级期刊PAMI的编委,担任机器学习顶级会议ICML 2014、ICML 2015、IJCAI 2015、UAI 2014、NIPS 2013等的领域主席,担任ICML 2014的地区联合主席。研究工作得到国家973计划(课题负责人)、自然科学基金优青基金和重点基金等项目的支持,入选“清华大学221基础研究人才支持计划”。
研究课题:国家自然科学基金(青年): 基于KKT条件的优化递归神经网络簇设计(2009-2011);国家自然科学基金(面上):基于稀疏编码模型的深层学习神经网络(2013-2016)
研究概况:我目前的工作集中在计算机科学与认知神经科学的交叉方向,研究兴趣包括人工神经网络和计算神经科学。一方面,我对揭开大脑的奥秘感兴趣,尤其是大脑处理感觉信息和决策信息的机制,主要使用的工具是层次化的计算模型和贝叶斯理论。目前也在尝试用功能性核磁共振成像(fMRI)结合机器学习的方法探索大脑的工作机制。另一方面,我对受大脑启发的计算方法感兴趣。前些年,我的研究集中在设计递归神经网络求解优化相关的问题。现在正在尝试结合更多的认知神经科学方面的知识,提高深度学习模型在物体识别和检测方面的精度和效率。
近年来,我们针对大脑的视觉腹侧通路的信息处理机制做了一些工作,建立了一系列层次化模型用来解释通路上各层(包括V1, V2, IT等区域)神经元的反应特性。两个较典型的工作是对HMAX模型进行改造,加上稀疏特性和反馈连接,能更好地解释一系列的神经科学数据,相关结果分别发表在PLoS ONE (2014)和Neural Computation (2010)上。
关于受大脑启发的计算方法,在过去的近十年间,我的大部分工作集中在递归神经网络求解优化问题的理论和方法上,深入挖掘了已有模型的特点,并设计了一系列新的模型,相关成果发表在多篇IEEE汇刊上。近年来,在深度学习方面也做了一些工作。在IJCNN2013年德国交通标志检测比赛中,我们使用卷积神经网络在两类标志上获得了第2名和第4名。除了物体识别和检测,图像的显著性区域检测也是我比较关注的应用。我们借鉴心理学中的一个理论Reverse Hierarchy Theory,构建了一个层次化模型,能较好地预测人眼在图像中的注视点。该成果被计算机视觉的重要会议CVPR’14录用。
自然语言处理与社会人文计算实验室
刘知远(官网介绍 http://www.tsinghua.edu.cn/publish/cs/4616/2014/20140321155236367361792/20140321155236367361792_.html )
主要研究方向为表示学习、知识图谱和社会计算。2011年获得清华大学博士学位,已在AAAI、IJCAI、ACL等人工智能领域的著名国际期刊和会议发表相关论文30余篇,Google Scholar统计引用超过1200次。承担多项国家自然科学基金。曾获清华大学优秀博士学位论文、中国人工智能学会优秀博士学位论文、清华大学优秀博士后、中文信息学会青年创新奖,入选CCF-Intel青年学者提升计划、中国科协青年人才托举工程。担任中文信息学会青年工作委员会执委、副主任,中文信息学会社会媒体处理专委会委员、秘书,SCI期刊Frontiers of Computer Science青年编委。担任ACL、IJCAI、AAAI、NAACL、EMNLP、WWW、WSDM等著名学术会议的程序委员会委员以及TKDE、TOIS、JCST等著名学术期刊审稿人。
国家自然科学基金面上项目:大规模知识图谱的分布式表是学习、知识获取与推理应用(2016-2019)
国家自然科学基金青年基金项目:基于协同语义计算的社交媒体信息扩散与可信性研究(2013-2015)
自动化系
张长水 负责大眼睛实验室
模式识别,机器学习,人工智能,计算机视觉,图像处理,进化计算,复杂网络等研究领域以及和工业界的合作。近几年在国际期刊和会议上发表学术论文超过100篇,其中包括国际权威期刊Pattern Recognition,TNN,TKDE,IEEE Transaction on Multimedia,以及国际顶级会议IJCAI,AAAI,NIPS,ICML,ECML,SIGIR,CVPR等。
研究课题:指纹识别,人脸识别,生物特征识别,工业线路板检测,BBS回文网络分析,图书借阅网络的挖掘与分析
编著书籍:1. 阎平凡,张长水,人工神经网络与模拟进化计算,清华大学出版社,2000,11,北京 2.《智能信息处理和智能控制》,浙江科学技术出版社,1999,合著 3. David Zhang,Automated Biometrics: Technologies and Systems, Kluwer Acdemic Publisher, USA, June,2000。合著
北大
机器感知与智能教育部重点实验室---机器学习研究室
林宙辰
主要研究领域:机器学习,模式识别,计算机视觉,图像处理,数值计算与优化
主要学术任职:IEEE Trans. Pattern Analysis and Machine Intelligence编委(国际顶尖期刊,中国大陆第四个编委)、International J. Computer Vision编委(国际顶尖期刊,中国大陆第一个编委)、Neurocomputing编委、IEEE高级会员(Senior Member)
Area Chair: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014(国际顶尖会议,中国大陆第二个Area Chair)
深度学习实验室
北京大学数学科学学院统计学教授,北京大数据研究院教授。之前曾经先后任教于上海交通大学和浙江大学,任聘计算机科学教授。主要从事于统计机器学习与人工智能领域的研究和教学。是国际机器学习旗舰刊物Journal of Machine Learning Research的执行编委,并多次受邀担任国际人工智能顶级学术会议的程序委员或高级程序委员。其网络公开课“统计机器学习”和“机器学习导论”受到广泛关注。
科研项目:深度学习:深度强化学习、自然语言处理、游戏娱乐、深度学习优化算法等;机器学习基础:贝叶斯方法、大规模机器学习模型的求解算法等;理论计算机科学:随机算法、在线博弈、区块链等;
浙江大学
计算机院
何晓飞(官网介绍 http://www.cs.zju.edu.cn/chinese/redir.php?cust=people&id=22887)
研究领域与方向:计算机视觉、机器学习、互联网数据挖掘
研究成果:近年来主要从事计算机视觉、机器学习、互联网数据挖掘等方面的研究,在流形学习、数据挖掘、图像检索等领域取得了重要进展。其提出的保局投影(LPP)是流形学习领域的代表性算法,提出的Laplacianfaces是继Eigenface、Fisherface之后基于子空间人脸识别领域的又一重要算法。目前担任IEEE Transactions on Knowledge and Data Engineering (TKDE)、IEEE Transactions on System, Man and Cybernetics – Part B (TSMCB)等国际顶级期刊编委。
蔡登(个人主页:http://www.cad.zju.edu.cn/home/dengcai/)
研究领域与方向:机器学习、计算机视觉、信息检索
图形与并行系统实验室
中国计算机学会普适计算专委会秘书长,中国计算机学会多媒体专委会委员,中国图像图形学会多媒体专委会委员,中国人工智能学会脑机融合与生物机器智能专委会委员。分别于1998年、2004年获得浙江大学学士与博士学位,2007年美国加州大学洛杉矶分校(UCLA)访问。入选教育部新世纪优秀人才支持计划、浙江省杰出青年基金、浙江省“钱江人才”计划。主要研究方向为普适计算、计算机视觉、脑机交互等。近年来,主持国家自然科学基金、863计划、浙江省自然科学基金等科研项目20余项。已发表论文100多篇(包括IEEE TIP、IEEE TITS、IEEE IS、PLoS ONE、ACM Computing Survey等权威期刊,以及CVPR, ICCV, IJCAI, Ubicomp等国际一流会议),获授权发明专利17项。相关成果曾获国内外众多媒体报道与关注,包括中央电视台、新华社、人民日报、China Daily、凤凰卫视等华语媒体,以及《New Scientist》、《Wired》等国外知名媒体网站。担任IEEE Systems Journal编委,担任IEEE TPAMI、TIP、TVCG、PR等多个国际期刊审稿人,曾任20多个国际学术会议程序委员会委员。获国家科技进步二等奖(排名第2)。
南京大学
机器学习与数据挖掘研究所
主要从事人工智能、机器学习、数据挖掘等领域的研究工作。主持多项科研课题,出版《机器学习》(2016)与《Ensemble Methods: Foundations and Algorithms》(2012),在一流国际期刊和顶级国际会议发表论文百余篇,被引用两万余次。主编文集多部。获发明专利二十余项。现任 Frontiers of Computer Science 执行主编,中国科学: 信息科学 等刊副主编,Machine Learning, IEEE Trrans PAMI 等刊的Associate Editor / 编委,曾任 科学通报 副主编(2008-2014),IEEE TKDE (2008-2012), IEEE TNNLS (2014-2017), IEEE TCDS (2015-2016), ACM TIST (2009-2017), Neural Networks (2014-2016) 等刊的Associate Editor / 编委等;亚洲机器学习会议(ACML)发起人及指导委员会主席,ICDM、PAKDD、PRICAI指导委员会委员,国际人工智能联合会议(IJCAI 2015-2016) 顾问委员会委员,数十次担任国际学术会议主席
香港中文大学
Multimedia Laboratory
多媒体实验室---计算机视觉黄埔军校
Below we list down some of the recent advances and developments in the deep learning field:
Deep Learning makes MIT Tech Review’s list of top-10 breakthroughs of 2013.
Won ImageNet 2012 challenge on recognizing 1000 different types of object.
Most of the approaches in ImageNet 2013 challenge use deep learning models.
Deep learning is becoming a mainstream technology for speech recognition at industrial scale.
Won the competition to predict job salaries from job advertisements
Find molecules for potential new drugs.
Won ICPR 2012 mitosis detection in breast cancer histological images.
Won MICCAI 2013 Grand Challenge on mitosis detection.
Best artificial offline recognizer of Chinese characters from the ICDAR 2013 competition.
Won brain image segmentation contest.
Baidu opens a deep learning lab in the Silicon Valley.
Yahoo acquires startup LookFlow to work on Flickr And ‘Deep Learning’.
Facebook is setting up a deep learning team.
Google and Baidu announced their deep learning (specifically, convolutional neural network) based visual search engines.
西安交通大学
人工智能与机器人研究所
主要进行以计算机视觉与模式识别为基础的智能信息处理结合学科发展前沿,重点进行视觉信号统计特性、初级视觉模型、计算机图形学和机器视觉信息计算模型研究;智能系统的数理机制探索与模型化;计算视频及面向图像和视频处理的超大规模专用集成电路设计;基于图像信息的智能控制与识别系统和各种图像处理方法与技术。
郑南宁
提出图像分析和视觉知识描述新方法,为构造计算机视觉系统和基于图像信息的智能控制系统,提供了理论指导和关键技术。完成了“精密装配机器人机器视觉系统”研究。发明了一种图像边缘曲线拟合的新方法。完成了“高性能机器视觉及车型与牌照自动识别系统。提出在线交互式立体测深方法,研制出“X线数字减影血管造影系统”及“DSA1250数字减影血管造影系统”。研制出具有自主知识产权的数字电视扫描制式转换及视频处理芯片。