一元函数积分学
不定积分与定积分的概念、性质
原函数、不定积分和定积分
不定积分与原函数
设
F
′
(
x
)
=
f
(
x
)
,
x
∈
(
a
,
b
)
F'(x)=f(x), x\in (a, b)
F′(x)=f(x),x∈(a,b),则称
F
(
x
)
F(x)
F(x)为
f
(
x
)
f(x)
f(x)在
(
a
,
b
)
(a, b)
(a,b)上的一个原函数。为了方便,一般将“在
(
a
,
b
)
(a, b)
(a,b)上”几个字省略。
若
F
(
x
)
F(x)
F(x)是
f
(
x
)
f(x)
f(x)的一个原函数,则
F
(
x
)
+
C
F(x)+C
F(x)+C是
f
(
x
)
f(x)
f(x)的全体函数集合,并且
f
(
x
)
f(x)
f(x)的原函数必定是
F
(
x
)
+
C
F(x)+C
F(x)+C的形式
f
(
x
)
f(x)
f(x)的原函数的一般表达式
F
(
x
)
+
C
F(x)+C
F(x)+C称为
f
(
x
)
f(x)
f(x)的不定积分,记成
∫
f
(
x
)
d
x
=
F
(
x
)
+
C
\int f(x)\,d x = F(x)+C
∫f(x)dx=F(x)+C
其中
F
(
x
)
F(x)
F(x)是
f
(
x
)
f(x)
f(x)的任意一个确定的原函数,
C
C
C是任意常数
- 不定积分是所有原函数的集合,因此务必加上任意常数 C C C
定积分
设 f ( x ) f(x) f(x)在 [ a , b ] [a, b] [a,b]上有定义且有界,作以下4步
- 分割:在 [ a , b ] [a, b] [a,b]中插入 n − 1 n-1 n−1个分点 a = x 0 < x 1 < … < x n = b a=x_0<x_1<\ldots<x_n=b a=x0<x1<…<xn=b,将区间 [ a , b ] [a, b] [a,b]分成 n n n个小区间
- 近似:在每个小区间 [ x i − 1 , x i ] [x_{i-1}, x_i] [xi−1,xi]中任意取一点 ξ i \xi_i ξi,作以 ξ i \xi_i ξi为高, [ x i − 1 , x i ] [x_{i-1}, x_i] [xi−1,xi]为底的小矩形
- 求和: S n = ∑ i = 1 n f ( ξ i ) Δ x i S_n = \sum_{i=1}^n f(\xi_i)\Delta x_i Sn=∑i=1nf(ξi)Δxi
- 取极限:记
λ
=
max
1
≤
i
≤
n
{
Δ
x
i
}
,
lim
λ
→
0
∑
i
=
1
n
f
(
ξ
i
)
Δ
x
i
\lambda = \max_{1\leq i\leq n}\{\Delta x_i\}, \lim_{\lambda\rightarrow 0}\sum_{i=1}^n f(\xi_i)\Delta x_i
λ=max1≤i≤n{Δxi},limλ→0∑i=1nf(ξi)Δxi
如果上述极限存在,则称 f ( x ) f(x) f(x)在 [ a , b ] [a, b] [a,b]上可积,并称上述极限为 f ( x ) f(x) f(x)在 [ a , b ] [a, b] [a,b]上的定积分,记为
∫ a b f ( x ) d x = lim λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \int_{a}^b f(x)\,d x = \lim_{\lambda\rightarrow 0}\sum_{i=1}^n f(\xi_i) \Delta x_i ∫abf(x)dx=λ→0limi=1∑nf(ξi)Δxi
- 若 f ( x ) f(x) f(x)和 g ( x ) g(x) g(x)在区间 [ a , b ] [a, b] [a,b]上连续, f ( x ) ≤ g ( x ) f(x)\leq g(x) f(x)≤g(x),则至少存在点 x 1 , a ≤ x i ≤ b x_1, a\leq x_i\leq b x1,a≤xi≤b,使 f ( x 1 ) < g ( x 1 ) f(x_1)<g(x_1) f(x1)<g(x1),则有 ∫ a b f ( x ) d x < ∫ a b g ( x ) d x \int_a^b f(x)\,d x<\int_a^b g(x)\,d x ∫abf(x)dx<∫abg(x)dx
- 加强的积分中值定理:设
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a, b]
[a,b]上连续,则至少存在一点
ξ
∈
(
a
,
b
)
\xi\in(a, b)
ξ∈(a,b)使得
∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \int_{a}^b f(x) \,d x = f(\xi)(b-a) ∫abf(x)dx=f(ξ)(b−a) - 定积分存在定理:
- 设 f ( x ) f(x) f(x)在 [ a , b ] [a, b] [a,b]上连续,则 ∫ a b f ( x ) d x \int_a^b f(x) \,dx ∫abf(x)dx存在
- 设 f ( x ) f(x) f(x)在 [ a , b ] [a, b] [a,b]上有界,且只有有限个间断点,则 ∫ a b f ( x ) d x \int_a^b f(x) \,d x ∫abf(x)dx存在
- 原函数存在定理:设
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a, b]
[a,b]上连续,则在
[
a
,
b
]
[a, b]
[a,b]上必存在原函数
- 函数如果不连续,有可能可积,也有可能存在原函数,但是这两者没有关联
- 如果函数存在第一类间断点,则一定没有原函数
变限积分
设
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a, b]
[a,b]上可积,对
x
∈
[
a
,
b
]
x\in[a, b]
x∈[a,b],
f
(
x
)
f(x)
f(x)在
[
a
,
x
]
[a, x]
[a,x]上可积,于是
Φ
(
x
)
=
∫
a
x
f
(
t
)
d
t
,
x
∈
[
a
,
b
]
\Phi(x) = \int_a^x f(t)\,d t, \quad x\in[a, b]
Φ(x)=∫axf(t)dt,x∈[a,b]
定义了一个以
x
x
x为自变量的函数,称为变上限定积分。
- 设
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a, b]
[a,b]上连续,则
(
∫
a
x
f
(
t
)
d
t
)
′
=
f
(
x
)
,
x
∈
[
a
,
b
]
\left(\int_a^x f(t)\,d t\right)' = f(x), x\in[a, b]
(∫axf(t)dt)′=f(x),x∈[a,b]
- 可以使用导数的定义+积分中值定理证明
- 如果
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a, b]
[a,b]上除点
x
=
x
0
∈
(
a
,
b
)
x=x_0\in(a, b)
x=x0∈(a,b)外均连续,而在
x
=
x
0
x=x_0
x=x0处
f
(
x
)
f(x)
f(x)有跳跃间断点,满足
- lim x → x 0 − f ( x ) = f ′ ( x 0 − ) \lim_{x\rightarrow x_0^-} f(x) = f'(x_0^-) limx→x0−f(x)=f′(x0−)
- lim x → x 0 + f ( x ) = f ′ ( x 0 + ) \lim_{x\rightarrow x_0^+} f(x) = f'(x_0^+) limx→x0+f(x)=f′(x0+)
-
f
(
x
0
−
)
≠
f
(
x
0
+
)
f(x_0^-)\neq f(x_0^+)
f(x0−)=f(x0+)
记
F ( x ) = ∫ c x f ( t ) d t F(x) = \int_c^x f(t)\,d t F(x)=∫cxf(t)dt
不论 c c c是否为 x 0 x_0 x0均有
- F ( x ) F(x) F(x)在 [ a , b ] [a, b] [a,b]上连续(可导必连续)
- F ′ ( x ) = f ( x ) F'(x) = f(x) F′(x)=f(x),当 x ∈ [ a , b ] x\in[a, b] x∈[a,b],但 x = x 0 x=x_0 x=x0
- F − ′ ( x ) = f ( x 0 − ) F_-'(x) = f(x_0^-) F−′(x)=f(x0−), F + ′ ( x ) = f ( x 0 + ) F_+'(x) = f(x_0^+) F+′(x)=f(x0+)
牛顿-莱布尼茨定理
设
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a, b]
[a,b]上连续,
F
(
x
)
F(x)
F(x)是
f
(
x
)
f(x)
f(x)的一个原函数,则
∫
a
b
f
(
x
)
d
x
=
F
(
x
)
∣
a
b
=
F
(
b
)
−
F
(
a
)
\int_a^b f(x) \,d x = F(x)\Big|_a^b = F(b)-F(a)
∫abf(x)dx=F(x)
ab=F(b)−F(a)
- 用变限积分可以证明
反常积分
反常积分的概念
无穷区间上的反常积分
设
f
(
x
)
f(x)
f(x)在
[
a
,
+
∞
)
[a, +\infty)
[a,+∞)上连续,称
∫
a
+
∞
f
(
x
)
d
x
=
lim
b
→
+
∞
∫
a
b
f
(
x
)
d
x
\int_a^{+\infty} f(x)\,d x = \lim_{b\rightarrow +\infty} \int_a^b f(x)\,d x
∫a+∞f(x)dx=b→+∞lim∫abf(x)dx
为
f
(
x
)
f(x)
f(x)在
[
a
,
+
∞
)
[a, +\infty)
[a,+∞)上的反常积分,若极限存在,则称反常积分收敛;反之称反常积分发散。
无界函数的反常积分
设
f
(
x
)
f(x)
f(x)在区间
[
a
,
b
)
[a, b)
[a,b)上连续,且
lim
x
→
b
−
f
(
x
)
=
∞
\lim_{x\rightarrow b^-} f(x) = \infty
limx→b−f(x)=∞,称
∫
a
b
f
(
x
)
d
x
=
lim
β
→
b
−
∫
a
β
f
(
x
)
d
x
\int_a^b f(x)\,d x = \lim_{\beta\rightarrow b^-} \int_a^\beta f(x)\,d x
∫abf(x)dx=β→b−lim∫aβf(x)dx
为
f
(
x
)
f(x)
f(x)在区间
[
a
,
b
)
[a, b)
[a,b)上的反常积分(也称瑕积分),若极限存在,则称反常积分收敛;反之称反常积分发散,使
f
(
x
)
→
∞
f(x)\rightarrow\infty
f(x)→∞的点
b
b
b称为
f
(
x
)
f(x)
f(x)的奇点
反常积分收敛的比较判别法
无穷限反常积分的比较判别法
- 不等式形式:
- 设两个非负函数 f ( x ) , g ( x ) f(x), g(x) f(x),g(x)在 [ a , + ∞ ) [a, +\infty) [a,+∞)上连续,且 f ( x ) ≤ g ( x ) f(x)\leq g(x) f(x)≤g(x),若反常积分 ∫ a + ∞ g ( x ) d x \int_a^{+\infty} g(x)\,d x ∫a+∞g(x)dx收敛,则 ∫ a + ∞ f ( x ) d x \int_a^{+\infty} f(x)\,dx ∫a+∞f(x)dx一定收敛
- 极限形式:设两个非负函数
f
(
x
)
,
g
(
x
)
f(x), g(x)
f(x),g(x)在
[
a
,
+
∞
)
[a, +\infty)
[a,+∞)上连续,且
lim
x
→
+
∞
f
(
x
)
g
(
x
)
=
c
\lim_{x\rightarrow +\infty}\frac{f(x)}{g(x)} = c
limx→+∞g(x)f(x)=c,则
- 当 0 < c < + ∞ 0<c<+\infty 0<c<+∞时,反常积分 ∫ a + ∞ g ( x ) d x \int_a^{+\infty} g(x)\,dx ∫a+∞g(x)dx与 ∫ a + ∞ f ( x ) d x \int_a^{+\infty} f(x)\,dx ∫a+∞f(x)dx敛散
- 当 c = 0 c=0 c=0时,若反常积分 ∫ a + ∞ g ( x ) d x \int_a^{+\infty} g(x)\,dx ∫a+∞g(x)dx收敛,则 ∫ a + ∞ f ( x ) d x \int_a^{+\infty} f(x)\,dx ∫a+∞f(x)dx收敛
- 当 c = + ∞ c=+\infty c=+∞时,若反常积分 ∫ a + ∞ f ( x ) d x \int_a^{+\infty} f(x)\,dx ∫a+∞f(x)dx发散,则 ∫ a + ∞ g ( x ) d x \int_a^{+\infty} g(x)\,dx ∫a+∞g(x)dx发散
- 一般取 g ( x ) = 1 / x p g(x) = 1/x^p g(x)=1/xp
无界函数反常积分的比较判别法
- 不等式形式:
- 设两个非负函数 f ( x ) , g ( x ) f(x), g(x) f(x),g(x)在 ( a , b ] (a, b] (a,b]上连续,且 lim x → a + f ( x ) = ∞ , f ( x ) ≤ g ( x ) \lim_{x\rightarrow a^+} f(x) = \infty, f(x)\leq g(x) limx→a+f(x)=∞,f(x)≤g(x),若反常积分 ∫ a b g ( x ) d x \int_a^b g(x)\,d x ∫abg(x)dx收敛,则 ∫ a b f ( x ) d x \int_a^b f(x)\,dx ∫abf(x)dx一定收敛
- 极限形式:设两个非负函数
f
(
x
)
,
g
(
x
)
f(x), g(x)
f(x),g(x)在
[
a
,
b
)
[a, b)
[a,b)上连续,且
lim
x
→
+
∞
f
(
x
)
g
(
x
)
=
c
\lim_{x\rightarrow +\infty}\frac{f(x)}{g(x)} = c
limx→+∞g(x)f(x)=c,则
- 当 0 < c < + ∞ 0<c<+\infty 0<c<+∞时,反常积分 ∫ a + ∞ g ( x ) d x \int_a^{+\infty} g(x)\,dx ∫a+∞g(x)dx与 ∫ a + ∞ f ( x ) d x \int_a^{+\infty} f(x)\,dx ∫a+∞f(x)dx敛散
- 当 c = 0 c=0 c=0时,若反常积分 ∫ a + ∞ g ( x ) d x \int_a^{+\infty} g(x)\,dx ∫a+∞g(x)dx收敛,则 ∫ a + ∞ f ( x ) d x \int_a^{+\infty} f(x)\,dx ∫a+∞f(x)dx收敛
- 当 c = + ∞ c=+\infty c=+∞时,若反常积分 ∫ a + ∞ f ( x ) d x \int_a^{+\infty} f(x)\,dx ∫a+∞f(x)dx发散,则 ∫ a + ∞ g ( x ) d x \int_a^{+\infty} g(x)\,dx ∫a+∞g(x)dx发散
- 一般取 g ( x ) = 1 / ( x − a ) p g(x) = 1/(x-a)^p g(x)=1/(x−a)p
对称区间上奇、偶函数的反常积分
- 设
f
(
x
)
f(x)
f(x)在
(
−
∞
,
+
∞
)
(-\infty, +\infty)
(−∞,+∞)上连续,且为奇函数,又设
∫
0
+
∞
f
(
x
)
d
x
\int_0^{+\infty} f(x)\,d x
∫0+∞f(x)dx收敛,则
∫ − ∞ + ∞ f ( x ) d x = 0 \int_{-\infty}^{+\infty} f(x)\,d x = 0 ∫−∞+∞f(x)dx=0 - 设
f
(
x
)
f(x)
f(x)在
(
−
∞
,
+
∞
)
(-\infty, +\infty)
(−∞,+∞)上连续,且为偶函数,又设
∫
0
+
∞
f
(
x
)
d
x
\int_0^{+\infty} f(x)\,d x
∫0+∞f(x)dx收敛,则
∫ − ∞ + ∞ f ( x ) d x = 2 ∫ 0 + ∞ f ( x ) d x \int_{-\infty}^{+\infty} f(x)\,d x = 2\int_{0}^{+\infty} f(x)\,d x ∫−∞+∞f(x)dx=2∫0+∞f(x)dx - 如果存在 x = ± c x=\pm c x=±c为奇点,上述结论依旧满足
注意上述的收敛条件一定需要满足