一元函数积分学

一元函数积分学

不定积分与定积分的概念、性质

原函数、不定积分和定积分

不定积分与原函数

F ′ ( x ) = f ( x ) , x ∈ ( a , b ) F'(x)=f(x), x\in (a, b) F(x)=f(x),x(a,b),则称 F ( x ) F(x) F(x) f ( x ) f(x) f(x) ( a , b ) (a, b) (a,b)上的一个原函数。为了方便,一般将“在 ( a , b ) (a, b) (a,b)上”几个字省略。
F ( x ) F(x) F(x) f ( x ) f(x) f(x)的一个原函数,则 F ( x ) + C F(x)+C F(x)+C f ( x ) f(x) f(x)的全体函数集合,并且 f ( x ) f(x) f(x)的原函数必定是 F ( x ) + C F(x)+C F(x)+C的形式
f ( x ) f(x) f(x)的原函数的一般表达式 F ( x ) + C F(x)+C F(x)+C称为 f ( x ) f(x) f(x)的不定积分,记成
∫ f ( x )   d x = F ( x ) + C \int f(x)\,d x = F(x)+C f(x)dx=F(x)+C
其中 F ( x ) F(x) F(x) f ( x ) f(x) f(x)的任意一个确定的原函数, C C C是任意常数

  • 不定积分是所有原函数的集合,因此务必加上任意常数 C C C
定积分

f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上有定义且有界,作以下4步

  1. 分割:在 [ a , b ] [a, b] [a,b]中插入 n − 1 n-1 n1个分点 a = x 0 < x 1 < … < x n = b a=x_0<x_1<\ldots<x_n=b a=x0<x1<<xn=b,将区间 [ a , b ] [a, b] [a,b]分成 n n n个小区间
  2. 近似:在每个小区间 [ x i − 1 , x i ] [x_{i-1}, x_i] [xi1,xi]中任意取一点 ξ i \xi_i ξi,作以 ξ i \xi_i ξi为高, [ x i − 1 , x i ] [x_{i-1}, x_i] [xi1,xi]为底的小矩形
  3. 求和: S n = ∑ i = 1 n f ( ξ i ) Δ x i S_n = \sum_{i=1}^n f(\xi_i)\Delta x_i Sn=i=1nf(ξi)Δxi
  4. 取极限:记 λ = max ⁡ 1 ≤ i ≤ n { Δ x i } , lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \lambda = \max_{1\leq i\leq n}\{\Delta x_i\}, \lim_{\lambda\rightarrow 0}\sum_{i=1}^n f(\xi_i)\Delta x_i λ=max1in{Δxi},limλ0i=1nf(ξi)Δxi
    如果上述极限存在,则称 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上可积,并称上述极限为 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上的定积分,记为
    ∫ a b f ( x )   d x = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \int_{a}^b f(x)\,d x = \lim_{\lambda\rightarrow 0}\sum_{i=1}^n f(\xi_i) \Delta x_i abf(x)dx=λ0limi=1nf(ξi)Δxi
  • f ( x ) f(x) f(x) g ( x ) g(x) g(x)在区间 [ a , b ] [a, b] [a,b]上连续, f ( x ) ≤ g ( x ) f(x)\leq g(x) f(x)g(x),则至少存在点 x 1 , a ≤ x i ≤ b x_1, a\leq x_i\leq b x1,axib,使 f ( x 1 ) < g ( x 1 ) f(x_1)<g(x_1) f(x1)<g(x1),则有 ∫ a b f ( x )   d x < ∫ a b g ( x )   d x \int_a^b f(x)\,d x<\int_a^b g(x)\,d x abf(x)dx<abg(x)dx
  • 加强的积分中值定理:设 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上连续,则至少存在一点 ξ ∈ ( a , b ) \xi\in(a, b) ξ(a,b)使得
    ∫ a b f ( x )   d x = f ( ξ ) ( b − a ) \int_{a}^b f(x) \,d x = f(\xi)(b-a) abf(x)dx=f(ξ)(ba)
  • 定积分存在定理:
    1. f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上连续,则 ∫ a b f ( x )   d x \int_a^b f(x) \,dx abf(x)dx存在
    2. f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上有界,且只有有限个间断点,则 ∫ a b f ( x )   d x \int_a^b f(x) \,d x abf(x)dx存在
  • 原函数存在定理:设 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上连续,则在 [ a , b ] [a, b] [a,b]上必存在原函数
    • 函数如果不连续,有可能可积,也有可能存在原函数,但是这两者没有关联
    • 如果函数存在第一类间断点,则一定没有原函数
变限积分

f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上可积,对 x ∈ [ a , b ] x\in[a, b] x[a,b] f ( x ) f(x) f(x) [ a , x ] [a, x] [a,x]上可积,于是
Φ ( x ) = ∫ a x f ( t )   d t , x ∈ [ a , b ] \Phi(x) = \int_a^x f(t)\,d t, \quad x\in[a, b] Φ(x)=axf(t)dt,x[a,b]
定义了一个以 x x x为自变量的函数,称为变上限定积分。

  • f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上连续,则 ( ∫ a x f ( t )   d t ) ′ = f ( x ) , x ∈ [ a , b ] \left(\int_a^x f(t)\,d t\right)' = f(x), x\in[a, b] (axf(t)dt)=f(x),x[a,b]
    • 可以使用导数的定义+积分中值定理证明
  • 如果 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上除点 x = x 0 ∈ ( a , b ) x=x_0\in(a, b) x=x0(a,b)外均连续,而在 x = x 0 x=x_0 x=x0 f ( x ) f(x) f(x)有跳跃间断点,满足
    • lim ⁡ x → x 0 − f ( x ) = f ′ ( x 0 − ) \lim_{x\rightarrow x_0^-} f(x) = f'(x_0^-) limxx0f(x)=f(x0)
    • lim ⁡ x → x 0 + f ( x ) = f ′ ( x 0 + ) \lim_{x\rightarrow x_0^+} f(x) = f'(x_0^+) limxx0+f(x)=f(x0+)
    • f ( x 0 − ) ≠ f ( x 0 + ) f(x_0^-)\neq f(x_0^+) f(x0)=f(x0+)

      F ( x ) = ∫ c x f ( t )   d t F(x) = \int_c^x f(t)\,d t F(x)=cxf(t)dt
      不论 c c c是否为 x 0 x_0 x0均有
    1. F ( x ) F(x) F(x) [ a , b ] [a, b] [a,b]上连续(可导必连续)
    2. F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x),当 x ∈ [ a , b ] x\in[a, b] x[a,b],但 x = x 0 x=x_0 x=x0
    3. F − ′ ( x ) = f ( x 0 − ) F_-'(x) = f(x_0^-) F(x)=f(x0) F + ′ ( x ) = f ( x 0 + ) F_+'(x) = f(x_0^+) F+(x)=f(x0+)
牛顿-莱布尼茨定理

f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上连续, F ( x ) F(x) F(x) f ( x ) f(x) f(x)的一个原函数,则
∫ a b f ( x )   d x = F ( x ) ∣ a b = F ( b ) − F ( a ) \int_a^b f(x) \,d x = F(x)\Big|_a^b = F(b)-F(a) abf(x)dx=F(x) ab=F(b)F(a)

  • 用变限积分可以证明

反常积分

反常积分的概念

无穷区间上的反常积分

f ( x ) f(x) f(x) [ a , + ∞ ) [a, +\infty) [a,+)上连续,称
∫ a + ∞ f ( x )   d x = lim ⁡ b → + ∞ ∫ a b f ( x )   d x \int_a^{+\infty} f(x)\,d x = \lim_{b\rightarrow +\infty} \int_a^b f(x)\,d x a+f(x)dx=b+limabf(x)dx
f ( x ) f(x) f(x) [ a , + ∞ ) [a, +\infty) [a,+)上的反常积分,若极限存在,则称反常积分收敛;反之称反常积分发散。

无界函数的反常积分

f ( x ) f(x) f(x)在区间 [ a , b ) [a, b) [a,b)上连续,且 lim ⁡ x → b − f ( x ) = ∞ \lim_{x\rightarrow b^-} f(x) = \infty limxbf(x)=,称
∫ a b f ( x )   d x = lim ⁡ β → b − ∫ a β f ( x )   d x \int_a^b f(x)\,d x = \lim_{\beta\rightarrow b^-} \int_a^\beta f(x)\,d x abf(x)dx=βblimaβf(x)dx
f ( x ) f(x) f(x)在区间 [ a , b ) [a, b) [a,b)上的反常积分(也称瑕积分),若极限存在,则称反常积分收敛;反之称反常积分发散,使 f ( x ) → ∞ f(x)\rightarrow\infty f(x)的点 b b b称为 f ( x ) f(x) f(x)的奇点

反常积分收敛的比较判别法

无穷限反常积分的比较判别法
  • 不等式形式:
    • 设两个非负函数 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) [ a , + ∞ ) [a, +\infty) [a,+)上连续,且 f ( x ) ≤ g ( x ) f(x)\leq g(x) f(x)g(x),若反常积分 ∫ a + ∞ g ( x )   d x \int_a^{+\infty} g(x)\,d x a+g(x)dx收敛,则 ∫ a + ∞ f ( x )   d x \int_a^{+\infty} f(x)\,dx a+f(x)dx一定收敛
  • 极限形式:设两个非负函数 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) [ a , + ∞ ) [a, +\infty) [a,+)上连续,且 lim ⁡ x → + ∞ f ( x ) g ( x ) = c \lim_{x\rightarrow +\infty}\frac{f(x)}{g(x)} = c limx+g(x)f(x)=c,则
    • 0 < c < + ∞ 0<c<+\infty 0<c<+时,反常积分 ∫ a + ∞ g ( x )   d x \int_a^{+\infty} g(x)\,dx a+g(x)dx ∫ a + ∞ f ( x )   d x \int_a^{+\infty} f(x)\,dx a+f(x)dx敛散
    • c = 0 c=0 c=0时,若反常积分 ∫ a + ∞ g ( x )   d x \int_a^{+\infty} g(x)\,dx a+g(x)dx收敛,则 ∫ a + ∞ f ( x )   d x \int_a^{+\infty} f(x)\,dx a+f(x)dx收敛
    • c = + ∞ c=+\infty c=+时,若反常积分 ∫ a + ∞ f ( x )   d x \int_a^{+\infty} f(x)\,dx a+f(x)dx发散,则 ∫ a + ∞ g ( x )   d x \int_a^{+\infty} g(x)\,dx a+g(x)dx发散
  • 一般取 g ( x ) = 1 / x p g(x) = 1/x^p g(x)=1/xp
无界函数反常积分的比较判别法
  • 不等式形式:
    • 设两个非负函数 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) ( a , b ] (a, b] (a,b]上连续,且 lim ⁡ x → a + f ( x ) = ∞ , f ( x ) ≤ g ( x ) \lim_{x\rightarrow a^+} f(x) = \infty, f(x)\leq g(x) limxa+f(x)=,f(x)g(x),若反常积分 ∫ a b g ( x )   d x \int_a^b g(x)\,d x abg(x)dx收敛,则 ∫ a b f ( x )   d x \int_a^b f(x)\,dx abf(x)dx一定收敛
  • 极限形式:设两个非负函数 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) [ a , b ) [a, b) [a,b)上连续,且 lim ⁡ x → + ∞ f ( x ) g ( x ) = c \lim_{x\rightarrow +\infty}\frac{f(x)}{g(x)} = c limx+g(x)f(x)=c,则
    • 0 < c < + ∞ 0<c<+\infty 0<c<+时,反常积分 ∫ a + ∞ g ( x )   d x \int_a^{+\infty} g(x)\,dx a+g(x)dx ∫ a + ∞ f ( x )   d x \int_a^{+\infty} f(x)\,dx a+f(x)dx敛散
    • c = 0 c=0 c=0时,若反常积分 ∫ a + ∞ g ( x )   d x \int_a^{+\infty} g(x)\,dx a+g(x)dx收敛,则 ∫ a + ∞ f ( x )   d x \int_a^{+\infty} f(x)\,dx a+f(x)dx收敛
    • c = + ∞ c=+\infty c=+时,若反常积分 ∫ a + ∞ f ( x )   d x \int_a^{+\infty} f(x)\,dx a+f(x)dx发散,则 ∫ a + ∞ g ( x )   d x \int_a^{+\infty} g(x)\,dx a+g(x)dx发散
  • 一般取 g ( x ) = 1 / ( x − a ) p g(x) = 1/(x-a)^p g(x)=1/(xa)p

对称区间上奇、偶函数的反常积分

  • f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty, +\infty) (,+)上连续,且为奇函数,又设 ∫ 0 + ∞ f ( x )   d x \int_0^{+\infty} f(x)\,d x 0+f(x)dx收敛,则
    ∫ − ∞ + ∞ f ( x )   d x = 0 \int_{-\infty}^{+\infty} f(x)\,d x = 0 +f(x)dx=0
  • f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty, +\infty) (,+)上连续,且为偶函数,又设 ∫ 0 + ∞ f ( x )   d x \int_0^{+\infty} f(x)\,d x 0+f(x)dx收敛,则
    ∫ − ∞ + ∞ f ( x )   d x = 2 ∫ 0 + ∞ f ( x )   d x \int_{-\infty}^{+\infty} f(x)\,d x = 2\int_{0}^{+\infty} f(x)\,d x +f(x)dx=20+f(x)dx
  • 如果存在 x = ± c x=\pm c x=±c为奇点,上述结论依旧满足

注意上述的收敛条件一定需要满足

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值