商业化:广告归因

图片


大家好我是大明同学。

这期内容,我们一起来了解一下广告归因。

广告归因是指为某个用户的某个行为(如购买、注册、下载等)分配责任的过程,是衡量哪些广告活动导致了用户的某个行为的方式,通过广告归因结果来判断广告投放的转化效果,将转化效果和具体的投放广告单子来源进行精准匹配。在效果广告投放中,广告主会根据归因结果给予广告投放平台或者流量媒体合理公正的费用结算。

#01

广告归因模型

最后点击模型:将转化归因给最后一个与之相关的广告点击或触点。

第一点击模型:将转化归因给引导用户进入购买路径的第一个广告点击或触点。

线性归因模型:平均的将转化分配给所有参与的广告触点。

时间衰减模型:认为距离转化发生越近的广告触点对其的影响越大。

数据驱动的归因模型:利用统计方法和机器学习技术来分析广告触点对转化的影响,考虑了各种因素和触点之间的复杂关系。

这些归因都是要求广告和转化之间在一个窗口期内,默认有效窗口的长度可以根据广告平台或广告商的策略和实践而不同

#02

广告归因平台

广告归因平台(Mobile Measurement Partner,简称MMP) 是衡量移动广告业务成效的优化工具,为APP广告投放优化提供广告数据、投放收入、埋点数据等,依搭建主体和方式可以分为自建归因平台(以下简称“自建归因”)、第三方归因平台(以下简称“三方归因”)。

自建归因


自建归因即广告主自主搭建统计广告投放转化效果的归因平台,依托自身技术能力或私有化部署第三方归因平台搭建而成。凭借自身具有Web和应用级别追踪用户和转化的基础架构优势,广告主天然具备精准统计自身应用生态内发生的用户行为事件、设备信息的能力,自主与投放渠道完成广告效果匹配。

第三方归因

第三方归因即由行业第三方搭建的广告归因平台,第三方服务商依托自身技术搭建Tracking系统,与行业媒体渠道打通投放数据回传,广告主仅需在三方归因管理后台完成投放媒体配置,三方归因会自动生成Tracking链接,广告主将Tracking链接填写至广告投放平台即可。Tracking链接的存在可以让三方获取到与广告进行互动的用户信息。

图片

#03

基于设备ID的精准归因

基于设备ID的广告归因是一种方法,用于追踪和归因用户在设备上进行的活动或行为到特定的广告活动或广告中。这通过将设备ID(每个设备的唯一标识符)与用户的活动和广告交互进行匹配来实现。

设备标识符追踪是跟踪用户在不同广告触点和转化事件中所使用的设备标识符。对于移动设备,通常使用的标识符包括广告标识符(如iOS的IDFA或Android的GAID)或设备标识符(如iOS的UUID或Android的IMEI)。

当然这种归因方式也存在一定缺陷:

1. 隐私安全:收集和存储设备ID可能会导致隐私问题,因为用户可能不知道他们的数据正在被跟踪。

2. 跨屏追踪:设备ID可能不兼容不同的平台,导致追踪用户跨设备活动的困难。

3. 广告设备ID屏蔽:广告屏蔽软件可能会干扰设备ID跟踪,降低归因的有效性。系统版本可能禁止获取收集设备ID。

#04

IP + UA的模糊归因

由于我们对数据的收集不一定能做到全链路,针对前面的基于设备归因中由于安全和屏蔽等因素不能获取用户设备ID而无法归因的情况,出现了一种新的归因方式。IP(Internet Protocol)和UA(User-Agent)的广告归因是一种基于用户的 IP 地址和用户代理(User-Agent)字符串的归因方法。这种方法通常用于分析广告触点和用户行为之间的关系,以确定广告对于用户转化的影响。

IP+UA的归因方式也有一些弊端:

1,不准确性:IP地址和UA字符串并不总是能够准确地标识用户,因为它们可能会受到代理服务器、VPN等网络工具的影响,导致同一IP地址被多个用户共享,或者同一用户在不同设备上有不同的UA字符串。

2,隐私问题:使用IP地址和UA字符串进行归因可能涉及到用户隐私问题。IP地址可以用于识别用户的地理位置,而UA字符串包含了设备和浏览器的信息,可能泄露用户的个人信息和隐私偏好。

3,跨设备识别难度:IP地址和UA字符串通常只能识别用户在单个设备上的行为,难以跟踪和识别跨设备的用户行为,导致无法完整地理解用户的转化路径和行为轨迹。

4,数据不完整性:有些用户可能会使用匿名浏览模式或者在浏览器中禁用Cookie等跟踪技术,这样就无法收集到他们的UA字符串或者其他跟踪信息,导致数据不完整性和分析结果的偏差。

要说产品经理“深恶痛绝”的事情,核对数据/排查数据一定能排得上号,毕竟:基本相当于没有产出,且需要后端、数据同学协助,但是,数据准确定又是体现产品岗交付“确定性”必须直面的。

从工作经验来看,广告相关环节容易发生的数据问题如下表,这里通过2个案例来分享数据gap排查流程。

图片

案例一:媒体曝光上报异常

1、场景代入:用户在媒体A曝光广告主广告,媒体方面会根据配置的曝光监测链接,将部分信息匿名化传给广告主。突然收到很多通配符缺失告警,也就是说媒体方面没有替换这些缺失的通配符。

2、数据流分析

曝光监测链接配置 - 媒体下发数据 - 广告主接收数据并针对缺失量做告警。

3、原因分析

(1)曝光链接核查,配置没问题;

(2)通过sql跑3-5天缺失比例,并新建1个在线文档,将数据同步媒体方面协助排查。

排查发现媒体巡检机制会定期访问广告主落地页,核查广告主是否有更换落地页素材,对这部分数据也进行了上报,导致了数据异常。

4、解决方案

提需求给前端同学,将巡检机制产生的曝光/点击数据排查不上报,避免对数据干扰。

图片

案例二:应用商店词包转化数无法匹配

1、场景代入:应用商店账户层面归因没问题,但是看更细维度词包转化数据,都显示0。

2、数据流分析

媒体点击下发 (点击数据表)-App设备信息获取(设备信息表)- 投放数据归因 (归因表) - MarketingAPI消耗拉取(消耗拉取,含词包维度数据)

应用商店前后端消耗关联逻辑和信息流不一致,可参考

媒体消耗和广告主转化数据的3类关联逻辑

3、原因分析

(1)点击监测链接配置,正常;

(2)App设备信息获取,设备信息获取正常但数据落库异常,词包维度数据有问题;

(3)投放数据归因,异常,排查发现sql改动没有兼容设备信息大小写;

(4)MarketingAPI消耗拉取,正常。

4、解决方案

(1)优化sql逻辑;

(2)创建在线文档,同步排查逻辑并用sql跑3-5天异常数据,反馈设备信息表负责技术同学,由技术同学负责排查,自己定期push推进。

数据gap排查主逻辑:

(1)拆解数据流,这一步尤为重要,假如目前数据是0,期望的是1,拆解就是将0-1细化为 0 、 0.1 、0.2 ...... 1 ,数据排查大概率跨部分协作,拆解后才能从全局角度知道要哪些部门支持;

(2)找到各数据流相关表格,有时候你以为的数据逻辑不一定是你以为的,了解表格逻辑再排查一定会少走弯路;

(3)逐一分析相邻节点。一步步从 0-0.1 开始分析,找到各环节具体问题并提出解决方案。

#05

IOS SKAN归因

IOS 14开始出现隐私弹窗并且需要用户同意(ATT)。IOS14.5之后必须同意之后才能跟踪用户数据。鉴于此,苹果在 IDFA 之外提供了 SKAdNetwork( SK 指 StoreKit) ,可用于非用户层级的确定性归因:在不识别用户身份信息的前提下,对应用安装和广告效果进行衡量。所有平台在IOS 14.5之后都只能用SKAN来进行归因。

图片

https://developer.apple.com/documentation/storekit/skadnetwork/

虽然SKAN归因相对准确全面,也解决了前面的隐私问题,但是获取详细数据有限,无法实时获得转化数据,归因模型相对比较固定。

我是大明同学。

下期见。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值