阻容感基础08:电感特性原理(1)-什么是磁场

说在开头:关于黑洞

爱因斯坦的场方程:(大家看看就行,千万别较真)。公式的一边表示时空的形状,另外一边表示物质和能量。用物理学家惠勒的话来说就是:时空告诉物质如何运动,物质告诉时空如何弯曲。这个公式看着很简单,但这只是个假象,真要将这个公式全都摊开来,谁都会看的头晕:这个方程是一个二阶偏微分方程,非线性的。物理学家们看到非线性方程式,马上脑袋发昏、眼冒金星,而且这方程完全没有通用解法,只有某些特殊情况才比较容易解出来。所以爱因斯坦的场方程在当时没几个人能够搞懂的。 

而此时距离1919年日全食测量还早,光线弯曲(需要日全食环境)实验暂时还做不成,理论大家又都搞不懂,广义相对论就陷入了尴尬的境地。一批物理学家正在领会爱因斯坦的神奇,想要搞懂它,恐怕都得要先去补微分几何课,更多物理学家根本没有时间去研究这种古怪又用不上的物理学理论。

爱因斯坦没想到的是,有一位德国炮兵上尉在俄国前线简陋的条件下已经开始默默地解算场方程。想要计算爱因斯坦场方程,就必须给一堆前提条件以简化计算,爱因斯坦也没想到这么快就有人能折腾出结果来,收到此人信时不由眼前一亮,这位炮兵上尉真是天才啊。这个炮兵上尉曾是哥廷根大学天文台的台长,波茨坦天体物理台的台长,还是科学院院士(德国的院士就这么不值钱?直接送前线。),他就是大名鼎鼎的:施瓦西。施瓦西看到爱因斯坦发表的场方程后,在1915年计算出了一个球对称引力场中的解,这个解被称为“施瓦西解”;爱因斯坦帮他投寄了论文,而此时此刻施瓦西还蹲在俄国前线计算着炮弹的弹道。

施瓦西计算的是一个非常简单的情况:在真空中一个静止的、球对称的引力场如何分布。举个栗子:真空中只有一个太阳,其它地方空无一物,计算离开太阳一段距离的地方引力如何分布。假如太阳质量缩减为0,那么这个时空就退化成平直的闵可夫斯基时空,离开太阳无限远处,时空也是平直的。施瓦西在计算时发现了一个问题,在计算出来的施瓦西解里面,球体正中心的曲率会是横躺的8:∞。物理学家们看到这种8就脑壳发疼,因为在这个点上时空完全玩坏了,这个点也称作“奇(qi)点”,真是太奇怪了。

过了一个月,是瓦西又给爱因斯坦来信了,他又计算出来一个惊人的结果:一个天体,假如密度够大、半径够小的话,当半径小于某个数值时,路过的光居然都跑不出去,这颗星星居然是个“暗星”(18世纪末拉普拉斯预言的“暗星”又回来了,基于牛顿力学的“暗星”和广义相对论理论的“黑洞”差别,如下图所示),完全看不到。这是爱因斯坦广义相对论产下的第一个蛋,“暗星”里发生了什么,没有人知道,因为人毕竟是靠光来看见里面的景象,因此这个半径也称为“史瓦西半径”,在史瓦西半径的球面,会形成一个边界,被称为视界面(即:黑洞视界面)。

经过史瓦西计算,假如太阳被压缩成3千米的球,或则地球压缩成2厘米的球,也会发生光完全逃不出来的情况。史瓦西很快就回到了德国,是被人抬回来的,他得了一种罕见的皮肤病:天疱疮,在医院里躺了两个月,于1916年5月不幸去世。(参考自:吴京平-柔软的宇宙)

一,坡印亭矢量

我们看到一个设备标注的功耗时,通常用不同的电压、电流值来标明其能耗的大小,我们自然而然地认为电能传播是通过电流来实现的;根据电流的定义I = ΔQ/Δt,我们可以简单理解为在单位时间内通过自由电子的数量,那么对于横截面确定的导线来说,电流与自由电子的移动速度(定向运动,而非无序的热运动)成正比。

我们再来思考一下,假设三峡水电站发出来的电通过高压电线直接传送到上海,那需要多长时间呢?从常识判断,那应该是一瞬间的时间。自由电子在电场力作用下,运动速度能接近光速么?这显然是不可能的,我们通过牛顿第二运动定律:F=m*a,V=a*t=(F/m)*t;可知自由电子速度取决于与电场力、电子质量以及时间;通过电阻章节的学习,我们知道在导体中运动的自由电子会与热振动中的原子碰撞,自由电子不可能被无限加速。所以外加电场下的自由电子在金属导体中的移动速度,远比我们想象中的要慢,平均速度大约为几cm/s。

我想大家都能猜出来:电信号(包括电源,数字、模拟等信号)传播的本质是:电磁波的传播。如果将导线中的自由电子比作军训时排列整体的一条100人队列,那么电磁波就是教官的口号:当教官喊齐步走的时候,并不是队伍最后的一个人瞬间跨越了100人的队伍跑到了最前面,而是当声音传递到队伍最前方时,整条队列完成了向前跨步的动作。那我们就知道了:虽然跨步动作实现靠的是腿,但是动作传播靠的是嘴(声音)。

那么,电流的传输与电磁波能量的传输有什么关系呢?

1. 电磁波能量传播的方向与电流方向相同么?

1, 英国物理学家Poyting(坡印亭,非坡印瓶)在1884年提出了坡印亭矢量,S = E x H;其中E:电场强度,H:磁场强度,S:能流密度;E和H都是矢量,所以S也是矢量,其方向就是电磁能量流动的方向;那如何来判断电磁能量的流向?

——伸出你那万能的右手(右手螺旋定则):右手大拇指与四指垂直并在同一平面,四指指向电场(E)的方向,再逐渐握拳指向磁场(H)的方向,那么大拇指指向就是电磁场能量流动(S)的方向;以如下图电磁波为例:伸出右手手掌,四指指向电场向上(x轴),然后握拳四指指向面向我们的方向(y轴),那么大拇指的方向往右,也就是图中电磁波传播方向(z轴)。

2, 电流流过电阻器和电容器,电磁场能量流动方向是一样的么?

 (1) 如下左图电阻器电流为从左向右(电场方向相同):磁场方向根据右手定则为围绕着电阻器的圆,电阻器正上方磁场方向为垂直纸面向外,正下方磁场方向为垂直纸面向内;再次伸出你的万能右手:四指指向电场(电流)方向,然后弯曲四指朝外(电阻正上方的磁场方向),那么电磁能量流动方向向下(朝向电阻),即电阻器周围的能量流动指向电阻,说明电阻消耗电磁场能量

(2) 如下右图给电容器充电,电流方向为从左向右:电容内部产生电场,方向为从左向右,但是理想电容器内部为位移电流,产生对称的漩涡磁场H,根据E和H 的方向判定S的方向指向电容器内部;说明电容器充电过程中,不断有电磁场能量经空间流入到电容器两板之间的静电场中,使得板间静电场能量不断增加。

(3) 那么电阻器和电容器的电磁场能量流动方向都是指向器件内部,凭什么电阻器是耗能而电容器是储能呢?因为电容器内部流过的是:位移电流(前面章节已经啰嗦过了);位移电流不同于传导电流,但它真实存在也同传导电流等效的激发着磁场,只是位移电流没有实际电荷的运动,也不能产生热耗。

2. 我们可以得到结论:电磁能量的传播方向并不是电流方向。

3. 根据上述的分析,既然是电磁波在传播能量,为什么还需要PCB走线或电缆作为媒介呢?

1, 金属导线是电磁波的波导:电磁波顺着导线在导线附近传递,距离导线越远其电磁波能量越弱;

2, 电流顺着金属导线流动,电流越大则传输的磁场强度越大,那么传播的电磁波能量越大,如果没有导线作为媒介,那么真空或空气很难承载大的电磁波能量。

——所以为什么能够无线充电哪,为什么无线充电距离不能太远,因为空气中传播的功率大不了~

通过上述的分析,我们也就能理解:市电使用220V交流电,虽然电流方向在不断地交变,而电磁能量的传播方向却一直保持不变。

电磁能量传播原理对理解信号完整性和开关电源原理有非常大的帮助,在后续这几个专题中作进一步的阐述。

二,如何理解磁场

相比于电阻和电容,电感就显得更难了哈,同学们做好心理准备。因为电阻和电容只涉及到了电场能量,而电感则涉及到了电场能量与磁场能量的转化。所以在电感器原理之前呢,我们首先要知道磁场到底是个啥玩意;对于从小玩磁铁长大的兄弟们来说,这东西看不见摸不着,似乎又带着一份莫名亲切感;值得我们花一个大章节来深入分享。如果激起了大家的兴趣,那就继续往下了;如果没有,那我也只能硬着头皮继续啦。

我们从直观上理解,磁体周围产生磁场而带电物体/粒子周围产生电场,两者并无任何相关;直到19世纪前期,奥斯特发现了电流能使磁针发生偏转,而后安培在奥斯特的基础上发现产生磁场作用力的方向与电流方向垂直(这就是电动机的原理,安培后来提出了磁的分子电流假说);不久之后,法拉第又发现当将磁棒快速插入导线圈时,就能产生大电流(这就是发动机的原理),至此证明了电场与磁场有着密切的联系;最终麦克斯韦大宗师总结并统一了前人关于电场和磁场的理论,提出了完美的麦克斯韦方程组(并预言了电磁波的存在,赫兹最终实验证实了电磁波);自此经典电磁场理论建立完成。可以说我们今天绝大多数的科技、文明,都依托于电磁学相关的基础理论,这些个牛B闪闪的人物是这个时代的奠基人,我们不应该忘记他们。

电场是电荷及变化磁场周围空间里存在的一种特殊物质,它也不是由分子原子所组成的,但却是客观存在的“特殊物质”,具有通常物质所具有的力和能量等客观属性;物质和能量之所以能被感知,是因为它能与“我”产生力的作用或能量的传递(暗物质或暗能量无法被实验测试到,就是因为“它们”无法与“我们”产生明显的力的作用)。

——电场的力性质表现为:电场对放入其中的电荷有作用力,这种力称为电场力;电场的能性质的表现为:当电荷在电场中移动时,电场力对电荷做功,说明电场具有能量

磁场同电场一样,是一种看不见、摸不着的特殊的场,不是由原子或分子组成,但磁场却又是客观存在的(我们很早就真切地感知到了它的存在)。磁场具有辐射特性,磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的,所以两磁体不用在物理层面接触就能发生作用;所以磁场是指:传递实物间磁力作用的场

那磁场的本质是什么?我们先说结论:磁场是由运动电荷或电场的变化而产生的包括磁铁、电流磁场、电磁波,这看起来似乎有些奇怪,不急,下面就会有解释~)。

1. 如前所述,奥斯特、安培以及法拉第发现了电流与磁场的关系:电流流过导线时,会在导线周围产生磁场,同时变化的磁场也可以产生电流。

——从上述信息得到一个结论:电流联系着磁场,而电压联系着电场;电流是有磁性的,电压是有电性的。导线由于有电压(电场)会产生电流,然而有电流的地方必然会产生磁场!

2. 磁铁磁场和电流磁场(包括地球地磁)的本质是一样的:都是由电荷运动所产生的。磁铁磁性源自两部分:轨道磁矩(由电子绕原子核运动产生)和自旋磁矩(由电子的自旋产生)。

1, 非磁性原子:原子中的电子数为偶数,即电子成对的存在原子中;成对的电子自旋磁矩与轨道磁矩方向相反而相互抵消,使原子中的电子总磁矩为零。

2, 磁性原子:原子中的电子数为奇数或者虽为偶数但其磁矩由于一些特殊原因没有完全抵消,使原子中的总磁矩不为零,带有剩余磁矩的原子称作磁芯原子(铁、钴、镍等)。

——我们在生活中看到的大多数金属都是非磁性原子,因为我们的原子遵循“泡利不相容原理”:一个原子中不可能在电子层或电子亚层,电子云伸展方向和自旋方向完全相同的两个电子;即每层电子的自旋必然相反(自旋磁矩抵消,关于“泡利不相容原理”后面的章节会有详细解释)。

如下左图所示,任何一个原子或分子,都可以看作有电荷绕着中心旋转,总体形成一个微小的环电流,即“分子环流”。 根据运动电荷激发磁场的规律,该“分子环流”将产生一个磁矩,大小为分子环流包围的面积乘以分子环流的等效电流 ,方向与环流方向成右手螺旋关系,如下右图所示,磁矩的方向正好沿环流形成的磁场的方向。

一般情况下物质的“分子环流”排列是混乱的,因此不显磁性,如下左图所示。当受到外磁场作用时,这些分子环流将大致整齐排列。如下图右边所示,它们的磁矩尽可能沿一个方向排列,就像无数个小磁针聚集在一起,形成一个总的磁场,所以由它们构成的物质整体就呈现磁性了。

假设有一个圆柱形磁铁,内部的分子环流排列整齐,那么处在磁铁截面边缘处的每个分子环流的每一段连一起,形成了一个大的环流,如下图所示。一个条形磁铁就像一个通电螺线管一样(不是顺着管道,而是绕着管道),其表面有看不见的电流,这种电流被局限在磁体的表面,称之为“束缚电流”,或“磁化电流”。根据右手定则,磁铁的磁场为顺着管道方向,形成N/S极。

1,磁场基本物理量

磁场的主要物理量有如下几个:

1. 磁场强度H:人们基于错误的假设:磁场存在磁荷,并分为正负两种磁荷(类似于正负电荷);并通过该假设提出了磁荷的库仑定律(静止点电荷相互作用力的规律:电荷量的乘积成正比,距离的平成反比,同性相斥,异性相吸)。定义:H = F/(qm),表示单位正磁荷(qm)在磁场中所受的力(F,作用于磁荷的力)被称为磁场强度,单位为安培/米(A/m)。

——磁铁有N/S两极,它们同极相斥异极相吸,这一点同正负电荷非常相似;所以人们假定:在N极上聚集着正磁荷,在S极上聚集着负磁荷(磁单极的概念)。并将磁现象与电现象类比,得出一系列相似的定律,引入相似的概念:例如磁的库仑定律、磁场强度、磁势、磁偶极矩等。

2. 磁感应强度B:也被称为磁通量密度或磁通密度(需要注意后续三个名词都会出现,不同应用场景下称谓会有差别,但是指的是同一个东西),是真正描述磁场强弱和方向的物理量(矢量,有大小和方向),国际通用单位为特斯拉(T);它表示垂直穿过单位面积的磁力线的多少。在物理学中磁场的强弱使用磁感应强度(磁通密度)来表示:磁感应强度越大表示磁感应(作用于电荷的力)越强,磁感应强度越小则表示磁感应越弱。

1, 人们发现电荷在磁场中运动时,会受到力的作用,由物理学家洛伦兹首先提出这个观点,被称为洛伦兹力;通过洛伦兹力得到磁感应强度,用来衡量磁场的强度。

——如下左图,考虑一磁场中的带电粒子,电荷量为q,速度为v,受到洛伦兹力为F,假设v与磁场方向夹角为θ;实验证明洛伦兹力F与电量 q成正比,与v成正比,与sinθ成正比;即将带电粒子的速度v沿磁场方向正交分解,则v只有垂直于B的分量v ̝影响F。于是定义:B = F/(qv*sinθ),方向与磁场方向相同,用于衡量磁场的大小。

2, 如下左图,磁感应强度B在空间中形成一个向量场B(x,y,z),如果这个场不随时间改变,就称之为稳恒磁场;如果B处处相同,就称之为匀强磁场。带电粒子沿着磁场方向运动时,不受洛伦兹力:v * B = 0

——如下右图,假设在匀强磁场中,磁场强度为B,粒子电荷量为q,质量为m,速度为v(垂直B),那么F = qv*B;根据向心力公式:F = mV²/r =  qv*B,可得:r = mv/(qB),可以通过磁场控制带电粒子的运动路径。

3, 安培提出分子电流假说认为:并不存在磁荷,而磁的本质是分子电流(最终呈现的是对电荷而非磁荷的作用);所以磁场的强度须用磁感应强度来表示(与电场强度E对应);但磁场强度H在磁介质磁化问题上,作为导出的辅助量还是有重要的作用:磁场强度只取决于外加磁场本身,得到真空中的磁感应强度:B = μ0* H。

3. 磁通量Φ:假设在磁感应强度为B的匀强磁场中,有一个面积为S且与磁场方向垂直的平面,磁感应强度B与面积S的乘积(Φ= BS),叫做穿过这个平面的磁通量(标量,只有大小而无方向),简称磁通,国际单位制单位是韦伯(wb)。

——Φ= sBds,其中ds是表面面积的微分,如果该表面上B是常数,那么可得Φ= BS,如果S与垂直于B的平面间的夹角为θ时,则有ΦB*(S*cos θ)= S*(B *cos θ);闭合表面上的B积分为0,因为磁力线既无起点也无终点,但连续。

4. 磁导率μ:表征磁介质磁性的物理量表示在空间或在磁芯空间中的线圈流过电流后,产生磁通的阻力或是其在磁场中导通磁力线的能力:μ=B/H 。μ为介质的磁导率,或称绝对磁导率,定义真空磁导率用μ0(4π×10⁻⁷H/m)表示,我们一般使用的是磁介质的相对磁导率:μr,其定义为绝对磁导率μ与真空磁导率μ0之比,即μr = μ/μ0。

——磁导率看成“粒子”对外界磁场的受力响应程度:磁导率越大,同样外加磁场强度H使得粒子的受力响应(B)就越大;如果磁导率为零,那么无论再大的磁场强度(H)也不会使得“粒子”有受力反应(B)。如下左图所示,实际磁介质的磁导率并非是一个固定的值(μ = B/H),它会随磁场强度以及介质磁化而变化,呈现出磁滞回线的曲线

——真空磁导率是μ0而并非是0,而且真空中充满了量子潮汐能量;那哪里的磁导率是0呢?例如虚空,那什么是虚空呢?除了没有任何物质和能量外还没有空间与时间;我们无法具象化虚空或虚无,因为我们看到的一切都是“有”,一切言语都无法用来描述“无”,只能自己意会,但我目前还无法意会到“虚无”。

1, 初始磁导率μi:指上图曲线中,材料在磁场强度H为0或无穷接近于0时的磁导率,表述为: ;

2, 最大磁导率μm:在初始阶段(a->b),磁化曲线中随着H的增大,曲线斜率μ也增大(μ = B/H),在某一磁场强度Hm时,μ达到最大;

3, 饱和磁导率μs:所谓饱和是指该磁介质磁化曲线中磁感应强度B达到最大值Bs时,此时如果再增加磁场强度(对应电感电流),那么磁感应强度B不会再增加,μs是对应Bs的磁导率;

4, 有效磁导率μeff:建立一个半径为 r,磁导率为μ,电导率为σ的长直圆柱导体上紧贴密绕一螺线管线圈的模型,通上交变电流,导体产生交变磁场,因为变化的磁场对研究计算有不小难度的,故假设横截面上的磁场是均匀且恒定不变,磁导率在截面沿径向变化,则这个模型产生的磁通就等于真实情况下圆柱导体里的磁通。德国学者福斯特博士提出:用变化的磁导率和恒定的磁场去替代变化的磁场和恒定的磁导率,这个变化的磁导率就叫有效磁导率

似乎,好像,磁的概念有点多,估计要看三遍才能理解,建议看到此处后再回头重新看一遍。

2,磁场基本物理定律

通过上面的论述,我想我们对磁场已经建立了初步的认知,知道了磁场与电流(电荷运动)的关联性,了解了磁场本身的几个基本物理量:磁场强度H,磁感应强度B,磁通量Φ以及磁导率μ;上面这些概念都非常重要,是后续理解电感原理、信号/电源完整性以及开关电源相关专题的基础。如果还存有疑问(本文的逻辑没有说服你,或者有些专业名词概念还不清楚),非常好,你对磁场的理解已经快超越我了,建议同学们根据困惑的点查资料进行扩展阅读。接下来我们继续分享磁场相关的一些基本物理定律。

1. 安培环路定理:在稳恒磁场中,沿着任何一条闭合回线L,磁场强度H的线积分值恰好等于该闭合回路所包围的电流代数和乘以磁导率。可以用数学公式表述:

——安培环路定理需要满足两个条件: 1, 电流及其分布不随时间变化; 假设某时刻电流突然从 0 变为某个值, 由于电磁场传播需要一定时间, 环路上不可能瞬间出现磁场;2, 空间中不能有变化的电场, 因为变化的电场也会产生磁场,就会改变环路积分的结果。我们通过安培环路定理公式:计算圆电流外平面磁场强度H的大小,并通过H和磁导率μ推出磁感应强度B的大小;如果回路没有包围电流,那么此时磁场强度H为0。

2. 磁路欧姆定律:电和磁之间存在着许多的相似性,在磁路上也存在类似于电路的欧姆定律;磁路欧姆定律用来确定磁路的磁通量Φ(电流I)、磁动势F(电动势V)和磁阻Rm(电阻R)三者之间的关系;作用在磁路上的磁动势F等于磁路内的磁通量Φ乘以磁阻Rm,F = Φ * Rm V = I*R

——F是磁动势,单位是安培砸,由它产生磁通量Φ;Rm是磁阻,单位是安培砸/韦伯,表示磁路对磁通量具有阻碍作用的物理量。

1, 铁芯的磁导率比周围空气的磁导率高很多,因此磁通量的绝大部分经过铁芯形成闭合回路,这种人为造成的磁通路径被称为磁路;

2, 如下右图,磁阻的大小与磁路通过的导体的长度l成正比,与导体的横截面积S成反比,比例系数为1/μ,即Rm = l/(μA)(类似电阻R = ρ*l/A

3, 假设右下图为一个均匀密集缠绕的环形通电线圈,其每一匝可看作一个圆形横截面(面积为S),将每匝的圆心连成一个圆(周长为l),则线圈内部的磁感应强度方向沿该圆的切线方向;磁感应强度对该圆上其中一段路径的积分:;由于H = B/μ,并定义:F = H*l,可得F/Rm=BS = Φ。

 3. 基尔霍夫(大师)第一定律:电路中任一个节点上,在任一时刻流入节点的电流之和等于流出节点的电流之和;假设进入某节点的电流为正值,离开这节点的电流为负值,则所有涉及这节点的电流的代数和等于零。对于磁路来说:穿出或进入任一闭合面的总磁通量恒等于零或进入任一闭合面的磁通量恒等于穿出该闭合面的磁通量),即磁通连续性定律。如下图所示:Φ1-Φ2-Φ3 = 0。

 4. 基尔霍夫(大师)第二定律:在任何一个闭合回路中,各元件上的电压降的代数和等于电动势的代数和,即从一点出发绕回路一周回到该点时,各段电压的代数和恒等于零,即∑U=0。对于磁路来说:沿任何闭合磁路的总磁动势恒等于各段磁路磁位降的代数和

——如下图所示,磁动势:F = N*i = k=13Hk*lk = H1*l1 + H2* l2 + Hδ*lδ = 。同时Rδ = lδ/(μ0*A) = lδ/[(μ/μr)*A]  = μr* lδ/(μ*A),其中μ0:空气磁导率;μr:相对磁导率;为宽度为δ的磁体气隙部分磁阻;我们可以看到磁阻大小为同样长度磁体磁阻的μr倍,等效为磁路长度增加了μr倍,增加了磁体无形体积即储能大小(具体在《电感器原理》详细扩展分析)。

 从磁场和磁路的基本物理定律中,我们可以发现磁路与电路的相通之处。如下图所示,我们将:磁动势等效为电动势,磁通量等效为电流,磁阻等效为电阻电路相关的物理定律同样也满足磁路。从现在开始我们要熟记这些对应关系,在电感的应用中会不断用到磁路计算的公式,如果不能自动对换到电路系统中的参数,会非常的痛苦。

当然磁路与电路还是有很多不同的地方,我们可以想象下磁通量可以存在于任何地方(包括真空),但电流却是有条件的。

1. 如果维持恒定磁通量Φ,那么铁芯中是没有损耗的;即电路中P = I²*R不符合磁路应用;

——交变的磁通量是会造成磁介质损耗,损耗随磁芯体积、工作频率、磁通密度变化的系数成正比(具体后续“开关电源”详细分析)。

2. 没有磁绝缘体,除了铁芯中的磁通之外,还有一部分漏磁通会散布在空气中;

——这造成了变压器的漏感必然会存在,漏感也好处也有坏处,具体后续“开关电源”章详细分析。

3. 磁导率μ不是一个常数,是磁通密度的函数;

——上一节关于磁导率部分,我们看到了磁导率(μ= B/H)并非是一条直线,它是会随着磁场强度的变化而变化的,固定磁介质的磁通密度(磁感应强度)会有一个最大值

4. 磁路在饱和状态时为非线性,磁通量的叠加原理不适用。

这一章是电感基础中的基础,只要理解了这一章的内容,后面的都好说也好理解。

~欢迎关注、点赞、收藏和转发,谢谢^_^~

阻容(RC)移相和容(LC)移相是两种常用的基于电容和电感的电子滤波或信号处理技术,它们的主要区别在于工作原理、响应特性以及应用场景: 1. **工作原理**: - **RC移相**:电阻R和电容C组成的电路中,当交流信号通过时,电容会对电流起限流作用,使得电压在时间上有滞后。改变电容大小,可以调整这个滞后角,实现移相。 - **LC移相**:电感L和电容C结合,电感相当于“存储”磁场能量,当交流信号通过时,电感会让电压滞后电流一个特定的角度,即π/2(90度)或它的整数倍。调整电感值,可以控制这一相位变化。 2. **响应特性**: - RC电路的响应速度较慢,因为它是基于电容的充电放电过程,适合低频信号。 - LC电路则更接近理想无源滤波器,能够提供快速响应,特别适用于高频信号,其带宽取决于电感和电容的比例。 3. **应用场景**: - RC移相常用于滤波、信号延时、信号整形等领域,特别是在需要较低频率响应的场合。 - LC移相器常常出现在滤波器(例如LC谐振滤波器)、振荡器和频率变换电路中,特别是在通信系统和雷达应用中。 4. **效果对比**: - RC移相侧重于时间延迟效应,而LC移相侧重于相位移动,能实现频率选择性的衰减或放大。 总的来说,两者都是实现信号相位变化的方式,但适用的条件和技术细节有所不同。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值