奥比中光深度相机(一):环境配置

奥比中光深度相机(一):环境配置

简介

深度相机可以获取RGB-D数据,不仅可以提取目标的可将光图像,同时还能获得目标距离相机的深度信息。深度相机在测距、三维重建、动物体尺体况分析等多个方面具有广泛的应用潜力。
在这里插入图片描述

目前,市面上的深度相机包含多个品牌,包括Kinect系列、Intel RealSense系列以及奥比中光系列等,由于奥比中光相机开源了基于python的控制代码,大多深度学习的项目又都是基于python编写的,所以我们选择了奥比中光深度相机Gemini 2L型号。据官网介绍,如果是在室外工作的话,Gemini 2XL型号的深度相机受阳光的干扰更少一点。
在这里插入图片描述
下面,我们根据Gemini 2L型号的奥比中光相机展开介绍,本篇博客主要是介绍下基于python的环境配置。

电脑环境

操作系统: Windows 11 (Windows系列应该都行)
Python: 3.9 (这个要求是3.9,不然后面可能出错)
Cmake 软件: 3.28.0

SDK配置步骤

https://github.com/orbbec/pyorbbecsdk

安装环境依赖

pip3 install -r requirements.txt

在安装好cmake软件的基础上,执行以下操作。

填写路径,点击Configure

在这里插入图片描述

选择Visual studio

在这里插入图片描述

点击Generate

在这里插入图片描述

完成基于Python的SDK配置

这里有两种方法,可任选其一。

方法一:使用Cmake直接打开

在这里插入图片描述

方法二:通过源文件打开

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这样在install/lib文件夹中,得到了四个文件,如下所示
在这里插入图片描述

然后,将这四个文件夹复制到examples文件夹中
在这里插入图片描述
我们使用pycharm软件打开examples/multi_device.py文件,可以发现里面第一行代码是from pyorbbecsdk import *,因此我们需要将上面三个文件中的一个文件 “pyorbbecsdk.cp39-win_amd64.pyd” 重命名为“pyorbbecsdk.pyd”。此时原始代码下面画有红色波浪线,不用管就行。

之所有python要安装3.9版本,主要是为了因为生成的这个文件 “pyorbbecsdk.cp39-win_amd64.pyd” ,是cp39,我们的python版本要和这个文件对应才行,不然会出错。同理,如果生成的文件是cp38,那我们这里就只能使用python3.8版本。
在这里插入图片描述

测试

这样我们就把环境给配置好了,运行examples/multi_device.py文件,可以同时展示RGB图像和深度图像。
在这里插入图片描述
该专栏博文地址:

界面开发(1) — PyQt5环境配置
界面开发(2)— 使用PyQt5制作用户登陆界面
界面开发(3)— PyQt5用户登录界面连接数据库
界面开发(4)— PyQt5实现打开图像及视频播放功能
界面开发(5)— PyQt5实现打开摄像头采集视频功能
奥比中光深度相机(一) — 环境配置
奥比中光深度相机(二) — PyQt5实现打开深度摄像头功能

日常学习记录,一起交流讨论吧!侵权联系~

<think>嗯,用户想了解奥比Python开发相关的内容。首先,我需要确认奥比的主营业务,他们主要是做3D视觉传感器的,比如深度相机,这在机器人、AR/VR、人脸识别等领域应用广泛。用户可能想用Python来调用他们的SDK进行开发,比如获取深度图像或者点云数据。 接下来,我应该考虑他们的开发流程。首先需要安装Python SDK,可能需要从官网下载或者通过pip安装。然后,用户需要连接硬件设备,比如Astra系列或者Femto系列。之后,初始化设备,配置参数,比如分辨率、帧率。接着,如何获取数据流,处理数据,比如转换成NumPy数组,或者使用OpenCV进行图像处理。最后是释放资源,确保程序结束前正确关闭设备。 另外,用户可能会遇到的问题,比如SDK安装失败,设备连接问题,数据处理的性能优化。这些需要给出些建议,比如检查驱动,使用多线程或异步处理,利用GPU加速。 还需要提到应用场景,比如三维重建、姿态识别、避障导航,这些能帮助用户理解实际用途。可能用户是开发者或研究者,想快速上手进行项目开发,所以示例代码和常见问题解答会比较有用。 还要注意用户可能不熟悉奥比的API结构,所以需要简要介绍主要模块,比如Device、Frame、深度图处理等。同时,强调Python开发的优势,比如快速原型开发,丰富的库支持,但也要注意性能瓶颈,可能需要结合C++进行优化。 最后,确保回答结构清晰,分步骤说明,让用户能步步跟着操作。如果有官方文档或社区资源,建议用户参考,并提供链接或搜索关键词,方便他们深入查找。</think>奥比(Orbbec)是家专注于3D视觉感知技术的企业,其Python开发主要围绕3D摄像头(如Astra系列、Femto系列)的数据采集、深度图像处理和3D建模展开。以下是开发者需掌握的核心内容: 、开发环境搭建 1. 硬件准备:需配备奥比3D摄像头(如Astra Pro/Azure Kinect兼容设备) 2. 安装SDK: ```bash pip install pyorbbecsdk # 官方Python SDK pip install open3d # 建议配合点云处理库 ``` 二、核心开发流程 1. 设备初始化 ```python from pyorbbecsdk import Pipeline, Config config = Config() pipeline = Pipeline(config) ``` 2. 深度数据捕获 ```python frames = pipeline.wait_for_frames() depth_frame = frames.get_depth_frame() depth_data = np.array(depth_frame.get_data()) ``` 3. 点云生成 ```python from pyorbbecsdk import OBSensorType depth_scale = pipeline.get_device().get_depth_scale() point_cloud = convert_to_point_cloud(depth_data, depth_scale) # 需实现坐标转换 ``` 三、关键技术点 1. 深度图对齐RGB: ```python align_filter = pipeline.get_align_filter(OBSensorType.COLOR_SENSOR) aligned_frames = align_filter.process(frames) ``` 2. 手势识别实现: $$ \text{深度阈值} = \begin{cases} 800mm & \text{近距离交互} \\ 1500mm & \text{全身追踪} \end{cases} $$ 四、性能优化建议 1. 多线程架构设计 2. OpenCL加速深度计算 3. 点云降采样(体素滤波参数建议:0.01m) 五、典型应用场景 1. 三维重建(精度可达±1mm @1m) 2. 人体姿态识别(支持21个骨骼点) 3. 避障导航(最小检测距离0.2m) 常见问题解决方案: 1. 设备连接失败:检查USB3.0接口供电 2. 深度图噪点:启用双边滤波 3. 帧率下降:降低分辨率至640x480 最新SDK支持功能(2024版): - 多摄像头同步采集 - TOF数据融合 - AI模型嵌入式部署 建议访问官方GitHub查看示例代码库: ``` https://github.com/orbbec/OrbbecSDK-Python ``` 开发文档重点章节: - 第5章 深度标定参数解析 - 第8章 点云配准算法 - 附录B Python API参考
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WYKB_Mr_Q

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值