13. 基于标定板的lidar到车体的外参标定思路

1. 什么是lidar到车体的外参?

在机器人,自动驾驶等领域,要想载体能够自主导航,那我们就得赋予他们和人类似的能力,就是让他们知道,自己是谁,自己在哪,我们怎么才能去到哪的问题。
载体上有很多传感器,各个传感器都是从自己的视角来对周围环境进行观测,这个“自己的视角”就是标记自己是谁,也就是说在一个自动驾驶汽车上,我们会给各个传感器打上标签,来分别每种观测数据是来自谁;
那么多传感器能够帮助载体完成自主导航的任务,都从自己的视角来定位和感知,这些信息我们是不能直接用的,我们得把他们统一到同一个坐标系,这样才能弄清楚“自己在哪”的问题,不能说前视相机说障碍物离我还有一米半呢,放心往前开就完事了,可是算上车头,车子往前动一下可能就撞上了。这时候就需要标定相机和车体之间的外参,其他传感器同理。

2. 为什么要做这个外参矫正?

这个问题,前面应该已经讲清楚了,如果不做外参标定,就相当于全车的各个传感器都认为自己是“车”,都基于他观测到的场景对车辆运动进行指挥,这显然是有问题的。举个简单的例子,我们人的触觉,视觉听觉这些传感器告诉我们所谓的“前后左右上下”这些方位,其实都是基于我们身体的坐标系的。当然我们的CPU处理能力很强,可以快速的在各个“坐标系”之间转换,我们能快速的知道,那个物体离我的手多远,离我的头大约几公分,周围有多少车辆,那些车辆接下来要做什么,我该采取什么样的行动,我们感觉很轻松写意的事情,在自动驾驶汽车来说可能就把他CPU干烧了。
扯远了,总之,在涉及多传感器融合,不管是定位还是感知,最后规划,都要把各个传感器观测到的信息,转到车体系这个坐标系,让车以自己的视角知道自己在哪,感知到了啥,如何做决策。

3. 怎么做这个外参矫正?

之前介绍过lidar到车体系自标定的思路,这个可以看我之前的自标定博客
今天再来介绍一种基于标定板的标定思路,不同于之前自标定,这种标定方案是依赖特殊设计的标志物来完成lidar和车体系的外参矫正。
其实这种依赖标志物进行标定的方案,精度应该更高,比如很多在标定间里做的标定都是这种方案。

标定间可以设计很多特征明显的标志物,这可以保证传感器采集数据时少引入额外的观测噪声;相比自动驾驶车辆在行驶过程中观测到的场景,标定间内的标志物是经过高精度设备测量过的,可以认为标定时对照的“真值”更加精确,;而且标定间内的场景固定,更加可控,能比较容易的实现更高精度,更一致的标定结果。
当然缺点也很明显,成本比较高。

3.1 标定思路

大家应该了解ICP吧,简单来说就是调整外参对齐两个坐标系内同时观测到的3D点。对于lidar和车系之间的外参,也可以使用ICP。于是我们就得知道某些车系和lidar系下的点坐标,然后调整外参对齐他们,“完全对齐”了这外参也就求解出来了。
于是我们现在应该解决如下几个问题:

  1. 点从哪来?
  2. 我们应该怎么设计标定板?
  3. lidar检测到那些点,也就是知道了那些点在lidar系上的坐标,那车体系下这些点坐标我们还是不知道啊。

好,我们一一来解决。

首先点从哪来,显然是标定板,所以我们要设计一款标定板。
其次,如何设计这款标定板?应该是便于lidar对我们要的那些点进行检测。
最后,如何得到这些点在车体系下的坐标。

lidar能够对点云中呈现明显特征的部分进行检测,所以为了让我们设计的标定板便于lidar对其进行检测,我们应该让标定板满足一些几何特征,比如圆形。很容易想到,我们要的是一些点,那么我们可以让lidar检测出这些圆心作为我们要ICP的点。
那么如何得到这些点在车体系下的坐标呢?这块比较复杂。
如果是土豪,可以设计好标定间的结构,固定车的位置,即已知车辆后轴中心相对于标定板的位置,再结合标定板上圆孔的位置,直接推算出那些圆心在车体系下的坐标。
我来说说我们的方案,我们相对没那么土豪,我们借助全站仪来辅助测量。
在这里插入图片描述
由于某些原因,上面的图比较模糊,大家凑活看,全站仪怎么使用,感兴趣的可以自行百度,我就简单介绍下如何得到车体系下的坐标:

  1. 我们可以通过全站仪同时打车辆上和标定板上的点,通过这些点可以得到全站仪和车体系之间的外参。
  2. 由于标定板尺寸是已知的,我们能够拿到那些圆心点在全站仪下的坐标,再通过外参就可以转换到车体系下。

好,至此我们的准备工作都已经完成了,接下来就是核心功能实现,一个是lidar对圆心的检测,一个就是ICP。其实ICP也不是多么难,这里就不介绍了。简单介绍下圆心怎么找。

3.2 lidar检测标定板上的圆心流程介绍

这里仅仅介绍一种思路。
核心思路:由于我们设计了上述标定板,四个圆心的尺寸以及结构信息我们都已经知道,利用这个约束,我们可以在lidar点云中寻找匹配。

于是流程为:接收lidar点云->点云预处理->提取标定板平面->将标定板平面旋转到与坐标系的某个平面平行->根据已知约束构建模版->拿这个模板在标定板平面上寻找匹配。

注意:将标定板平面旋转到与坐标系某个平面平行是必要的,除非你把你根据约束构建的模版旋转到标定板平面。

3.3 匹配过程

在这里插入图片描述
上图是找到圆心后的结果展示。
寻找圆心的过程也很简单,首先大体确定标定板中心位置,然后根据四个圆心位置构建约束(我这里是矩形),然后用这个矩形以各个方向旋转和平移来匹配四个圆的位置。

怎么才算匹配到了最好的位置?
当点云中的点落入以四个圆心,圆半径围成的圆内的点最少为最佳匹配。

下图为四个圆心在标定板上的移动过程展示:
在这里插入图片描述
下图是落入四个圆中点的个数统计趋势。
在这里插入图片描述
至此,找到圆心在lidar系下的坐标,结合之前得到的车体系下的坐标,做一个ICP,外参就求解出来了。

4. 老乡别走,一起来读书吧

微信公众号-过千帆,欢迎大家一起来读书交流成长,不焦虑!
在这里插入图片描述

<think>好的,我现在需要帮助用户了解激光雷达与辆集成时的标定方法和教程。首先,我需要回顾用户提供的引用内容,特别是引用[1]和引用[2],这些内容提到了激光雷达标定的基本概念和具体方法,比如最小方差法和点云配准法。 用户的问题是关于标定方法和教程,所以我需要先整理出主要的步骤和常用方法。根据引用[2],标定分为主激光雷达标定和其他雷达的标定。主激光雷达使用最小方差法,这可能涉及坐标系对齐和误差最小化。然后,其他雷达通过点云配准来匹配到主雷达的坐标系,这可能需要ICP算法之类的技术。 接下来,我需要确保回答结构清晰,分步骤说明。可能需要将标定流程分为几个阶段,比如数据采集、主雷达标定、辅助雷达标定、验证等。同时,要注意使用正确的LaTeX格式,例如数学公式需要用$...$或$$...$$,比如变换矩阵H的表示。 用户可能需要具体的操作步骤或工具,比如标定的使用、标定软件(如ROS中的工具包),或者标定时的注意事项。此,可能还需要提到标定精度的影响因素,如引用[2]中指出的主雷达标定精度对整体结果的影响。 然后,生成相关问题。要考虑用户可能进一步询问的内容,比如标定中的常见问题、优化方法、工具推荐等。例如,如何提高标定精度,或者如何处理动态环境中的标定挑战。 需要确保回答中的引用正确,比如在提到最小方差法时添加[^2],在提到应用场景时引用[^1]。同时,避免使用Markdown格式,保持自然的中文表达。 可能还需要检查是否有遗漏的关键点,比如标定前的准备工作,传感器的时间同步,或者实际应用中的案例。确保每个步骤都有足够的解释,帮助用户理解整个流程。 最后,验证回答是否符合用户的要求,是否覆盖了方法和教程的主要方面,并且引用了提供的考资料。确保LaTeX语法正确,没有格式错误,问题相关且具有针对性。</think>### 激光雷达与辆集成标定方法详解 激光雷达与辆坐标系的标定是确保感知数据准确性的关键步骤,主要分为**单激光雷达标定**和**多激光雷达联合标定**两类场景。以下为具体方法及操作流程: --- #### **一、单激光雷达与标定** 1. **数据采集** - 使用标定(如棋盘格、反光)或已知几何特征的环境(如墙面、柱状物体)。 - 辆需停放在平坦地面,激光雷达安装位置需固定。 - 采集多角度点云数据,覆盖标定目标的完整几何特征。 2. **最小方差法标定(主激光雷达)** - **目标**:求解激光雷达坐标系到辆坐标系的变换矩阵$H$(包含旋转$R$和平移$t$)。 - **数学模型**: $$ \min_{R,t} \sum_{i=1}^n \| (R \cdot p_i + t) - q_i \|^2 $$ 其中$p_i$为激光雷达坐标系下的点,$q_i$为辆坐标系下的对应点。 - **实现工具**:常用MATLAB、Python(NumPy)或ROS中的标定工具包。 --- #### **二、多激光雷达联合标定** 1. **主激光雷达标定** 完成主雷达与辆坐标系的标定后,其点云数据将作为其他雷达的考坐标系。 2. **辅助雷达标定(点云配准法)** - **步骤**: 1. 同步采集主雷达与待标定雷达的点云数据。 2. 提取环境中的公共特征(如墙面边缘、标定角点)。 3. 使用**ICP算法(迭代最近点)**计算两雷达间的变换矩阵$H$: $$ H = \arg\min_{H} \sum_{j=1}^m \| H \cdot p_j^{\text{target}} - p_j^{\text{ref}} \|^2 $$ 4. 验证配准误差,若误差超过阈值(如平移<0.05m,旋转<0.5°),需重新标定。 3. **标定精度优化** - 增加标定场景的几何特征复杂度。 - 使用高精度标定(如V形、多面体)。 - 引入运动补偿(若辆或雷达存在振动)。 --- #### **三、标定工具与教程推荐** - **开源工具** - **ROS-LIDAR-CALIBRATION**:支持多雷达标定,提供GUI界面操作[^1]。 - **Autoware**:包含激光雷达与IMU/GPS的联合标定模块。 - **教程资源** - **《激光雷达与相机联合标定指南》**(引用[1]专栏内容):详细讲解标定选择与数据采集技巧。 - **《多传感器标定实践》**(GitHub开源项目):提供代码实例与数据集。 --- #### **四、标定验证方法** 1. **静态验证** 将辆置于已知位置,检查点云与地图的匹配度。 2. **动态验证** 在低速行驶中,通过SLAM算法评估点云拼接的连续性。 3. **定量指标** 计算重投影误差(Reprojection Error)与点云配准残差。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宛如新生

转发即鼓励,打赏价更高!哈哈。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值