RAG论文研读

论文地址:https://arxiv.org/abs/2005.11401

1 论文解决的问题

  1. 之前的模型访问和精确操作知识的能力仍然有限,因此在知识密集型任务上,它们的性能落后于特定任务的架构
  2. 为模型决策提供来源以及更新其世界知识仍然是开放的研究问题

2 RAG工作流程

  1. RAG结构利用DPR根据提出的问题在知识库中寻找最相关的片段向量
  2. 片段向量与提问向量做上下文附加,传给LLM
  3. LLM进行回答
    ![[Pasted image 20250528160640.png]]

RAG相当于请了两个人,DPR相当于一个去知识库里找和你的问题有关的片段(没有思考能力,只找相关的信息)的人,LLM相当于根据你的问题,综合DPR给的信息进行回答的人。

2.1 DPR

2.1.1 作用与概述

  • DPR用于匹配与问题最相关的前K个知识片段,该技术能在开放域回答方面对开放域(如知识库、互联网等可修改的域)根据问题匹配最相关的知识片段。
  • DPR利用两个BERT的深度学习模型,分别将提问文本和处理后的开放域(知识库)的文本片段转化为高维向量,用于找到二者高维中的语义位置,最后利用向量检索找到与提示文本最关(或相近)的开放域文本向量片段

2.1.2 工作流程

  1. 对知识库做分割,将其分为等长的若干文本段作为向量转化的基本单位
  2. 利用BERT等深度学习模型将文本段编码至高维向量空间中,得到若干高维向量矩阵
  3. 利用BERT等深度学习模型将问题编码至高维向量空间中,得到高维向量矩阵
  4. 利用FAISS计算向量内积,在一个庞大的向量库中快速找到与查询最相关的文本块

2.1.3 疑问

  • DRP会忽略掉逻辑相关但语意不相近的信息吗?如下有一个案例。 问:“A讨厌B吗?”。知识库的三个文本段:1.A讨厌C喜欢的人 2.C喜欢D喜欢的人 3.D喜欢B 4.A讨厌E。DPR会提取A相关,B相关和”讨厌“相关的文段,也就是1、3和4,但是根据134无法回答这个问题。
    • 就AI给的结论来看,是可能出现这种问题的。

2.2 LLM

2.2.1 作用与概述

LLM 是 “大型语言模型” 的缩写,指的是那些使用海量数据和庞大参数规模训练而成的自然语言处理模型。
目前主流的LLM大多都基于Transformer架构,有关Transformer的介绍请参考我的另一篇文章【https://blog.csdn.net/Walluend/article/details/148280781?spm=1001.2014.3001.5501】
简单来说LLM会根据输入的文字序列回答相应的问题。RAG中附加上下文的目的就是为了让LLM的输入增加一些知识库内的信息

2.2.2 疑问

  • 常用的RAG训练不是端到端的训练,而是固定检索器DRP,对LLM进行微调,而DPR与LLM之间通过特征向量进行连接,所以注定LLM模型不能从优秀的模型中取之即用,而是要加上DRP后微调吗?
    • 一般来说,同一段文字,从DPR得到的特征向量与LLM模型的词嵌入向量会有一定的差别,所以需要微调来使LLM模型学习这些差异
    • 此外,附加上下文的这种特征,LLM模型可能不能良好地完成回答工作,此时需要微调使模型学习到如何从这种附带上下文的提问中进行回答

3 结尾

RAG(检索增强生成)是一种结合检索(Retrieval)生成(Generation) 的人工智能架构,旨在提高大模型的知识准确性和上下文理解能力。它通过先检索相关信息,再结合生成模型进行回答,以减少幻觉问题,提高对外部知识的引用能力。
RAG结构相比纯粹的 LLM,RAG 结合外部知识,减少错误信息。适用于多种任务,如问答系统、文档分析、企业知识管理等。并且其检索和生成部分可独立优化,便于适配不同 LLM。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值