视频物体检测文献阅读笔记

Impression Network for Video Object Detection
基于印象机制的高效多帧特征融合,解决defocus and motion
blur等问题(即视频中某帧的质量低的问题),同时提高速度和性能。
这里写图片描述

类似TSN,每个segment选一个key frame(注意,TSN做视频分类是在cnn最后才融合不同的segments)。特征融合前需要用Optical flow(FlowNet-S)来对齐。
目前使用的是fixed segment length,联想Deep Alternative Neural Network使用的自适应视频分段方法。

Detect to Track and Track to Detect
这里写图片描述
思考:track是不是可以代替印象网络中的光流来自动做对齐?

Mobile Video Object Detection with Temporally-Aware Feature Maps
这里写图片描述
哈哈,看来帧间特征的关联就是光流,TSN,印象机制,RNN,3d conv这几种常见办法了。
注意这里用的是卷积LSTM!且改进成了高效的Bottleneck-LSTM:
这里写图片描述

Spatial-Temporal Memory Networks for Video Object Detection
也是为了通过简单的帧来加强质量差的帧:
这里写图片描述

记忆机制(是不是和印象机制差不多?):
这里写图片描述

STMM是ConvGRU的改进,以更好地利用ImageNet预训练权重。
使用更高效的MatchTrans module来对齐帧间的特征(而不是光流。可以看出最近的文章思路都很像==),大概是基于近邻的思路。
动作分类中记忆机制会不会比TSN好,是否需要做对齐?

Towards High Performance Video Object Detection
这里写图片描述

路子和印象机制那篇很像,也是稀疏的特征传递,用flow对齐。好像方法更精致一些(虽然论文好像上传的很仓促,是因为最近太多类似工作上传了吗?)?比如对key frame进行了自适应?

  • 0
    点赞
  • 3
    收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wayne2019

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值