facebookresearch SlowFast 自定义ava数据集


我们先看看数据集的格式

ava_train_v2.1.csv

在这里插入图片描述

ava_val_v2.1.csv

在这里插入图片描述

ava_action_list_v2.1_for_activitynet_2018.pbtxt

在这里插入图片描述

ava_train_excluded_timestamps_v2.1.csv

在这里插入图片描述

ava_val_excluded_timestamps_v2.1.csv

在这里插入图片描述

train.csv

在这里插入图片描述
在这里插入图片描述

val.csv

在这里插入图片描述

ava_train_predicted_boxes.csv

在这里插入图片描述

ava_val_predicted_boxes.csv

在这里插入图片描述
ava_test_predicted_boxes.csv
在这里插入图片描述

### SlowFast 模型在 AVA 数据集上的预训练模型获取 为了获得 SlowFast 模型在 AVA 数据集上的预训练权重,可以参考官方文档或社区资源中的指引。以下是具体的方法: #### 方法一:通过 Facebook AI Research 官方仓库下载 Facebook 提供了一个公开的 GitHub 仓库 `slowfast`[^2],其中包含了多个预训练模型及其对应的配置文件。对于 AVA 数据集的预训练模型,可以在该仓库的 Model Zoo 页面找到相关链接。 访问地址通常如下所示: ```plaintext https://github.com/facebookresearch/SlowFast/blob/master/MODEL_ZOO.md ``` 在这个页面上,可以通过筛选条件定位到基于 AVA 的预训练模型。例如,查找类似于 `SLOWFAST_32x2_R101_50_50.yaml` 配置下的预训练权重文件路径。 执行以下命令可以直接加载并验证预训练模型: ```bash wget https://dl.fbaipublicfiles.com/pyslowfast/model_zoo/<specific_model_name>.pyth ``` 注意替换 `<specific_model_name>` 为实际的模型名称。 --- #### 方法二:本地运行脚本加载预训练模型 如果已经克隆了 SlowFast 代码库,则可以通过内置工具加载预训练模型。假设当前目录位于 `/home/slowfast/tools`,则可使用以下命令启动推理或微调过程,并指定预训练模型的位置[^3]。 示例命令如下: ```bash python run_net.py \ --cfg demo/AVA/SLOWFAST_32x2_R101_50_50.yaml \ PRETRAINED_MODEL_PATH /path/to/pretrained_model.pth \ TEST.BATCH_SIZE 8 NUM_GPUS 1 TEST_ONLY True ``` 上述命令中,`PRETRAINED_MODEL_PATH` 参数指定了预训练模型的具体存储位置。如果没有手动下载,也可以尝试从默认路径读取。 --- #### 方法三:自定义训练与保存 当无法直接获取预训练模型时,可以选择自行训练一个基础版本。这需要完整的 AVA 数据集以及强大的计算资源支持。根据之前的描述,博主曾提到整个流程耗时较长(约两天),因此建议仅在必要情况下采用此方式[^1]。 完成训练后,可通过以下代码片段保存生成的模型参数: ```python import torch torch.save(model.state_dict(), 'ava_pretrained_slowfast.pth') print("Pre-trained model saved successfully.") ``` --- ### 注意事项 - 如果网络环境受限,可能需要借助代理或其他加速手段下载大型模型文件。 - 确保安装依赖项齐全,特别是 PyTorch 和其他第三方库版本需匹配 SlowFast 要求。 - 对于 GPU 显存不足的情况,调整批量大小 (`TRAIN.BATCH_SIZE`) 或启用分布式训练可能是解决方案之一。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSPhD-winston-杨帆

给我饭钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值