2025年4月19日 记录大模型出现的计算问题

2025年4月19日 记录大模型出现的计算问题,用了四个大模型计算json的数值,3个错误,1个正确

问题

'''
Class   Train   Val
answer       2574    853
screen       5025    1959
blackBoard       7847    3445
teacher       8490    3228
stand       13932   4967
On-stage interaction       528     149
blackboard-writing       821     277
guide       1155    449

'''
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.ticker import FuncFormatter

# 设置Seaborn样式
sns.set(style="whitegrid")

# 用字典形式存储类别和对应的数量
train_data = {
    'hand-raising': 10538,
    'read': 17539,
    'write': 6447,
    'screen': 5025,
    'blackboard': 7847,
    'discuss': 3607,
    'guide': 1153,
    'answer': 3002,
    'stage interaction': 464,
    'teacher board writing': 770,
    'student board writing': 37,
    'stand': 13932,
    'teacher': 8490,
    'teach': 2097,
    'patrol': 740,
}

val_data = {
    'hand-raising': 2915,
    'read': 6539,
    'write': 3394,
    'screen': 1959,
    'blackboard': 3445,
    'discuss': 1785,
    'guide': 404,
    'answer': 399,
    'stage interaction': 214,
    'teacher board writing': 223,
    'student board writing': 40,
    'stand': 4967,
    'teacher': 3228,
    'teach': 236,
    'patrol': 553,
}

# 对类别和数量进行排序
sorted_pairs = sorted(train_data.items(), key=lambda x: x[1], reverse=True)
sorted_categories = [pair[0] for pair in sorted_pairs]
sorted_counts_train = [train_data[category] for category in sorted_categories]
sorted_counts_val = [val_data[category] for category in sorted_categories]

# 绘制柱状图
plt.figure(figsize=(8, 6))  # 调整图形大小

# 绘制训练集数据的柱状图
bars_train = plt.bar(sorted_categories, sorted_counts_train, color='skyblue', width=0.6, label='Train Dataset')

# 绘制验证集数据的柱状图,叠加在训练集的柱状图上
bars_val = plt.bar(sorted_categories, sorted_counts_val, color='lightcoral', width=0.6, 
                   bottom=sorted_counts_train, label='Val Dataset')

# 添加标题和标签
plt.ylabel('Numbers (in thousands)', fontsize=14)

# 旋转横坐标标签,修改为45度
plt.xticks(rotation=45, ha='center', fontsize=14) 

# 添加网格线
plt.grid(axis='y', linestyle='--', alpha=0.7)

# 自定义纵坐标格式
formatter = FuncFormatter(lambda x, pos: f'{x/1000:.1f}')
plt.gca().yaxis.set_major_formatter(formatter)

# 添加图例
plt.legend()

# 保存图形为PDF
plt.savefig('Classes-bar-chart-stacked.pdf', bbox_inches='tight', pad_inches=0.1)

# 显示图形
plt.tight_layout()
plt.show()

图中字体出现重叠与偏移

正确答案是:111989

豆包

要计算train_dataval_data中所有值的总和,步骤如下:

  1. 计算 train_data 总和
train_sum = sum(train_data.values()) = 10538 + 17539 + 6447 + 5025 + 7847 + 3607 + 1153 + 3002 + 464 + 770 + 37 + 13932 + 8490 + 2097 + 740 = 82797
  1. 计算 val_data 总和
val_sum = sum(val_data.values()) = 2915 + 6539 + 3394 + 1959 + 3445 + 1785 + 404 + 399 + 214 + 223 + 40 + 4967 + 3228 + 236 + 553 = 30301
  1. 计算所有数据总和
total_sum = train_sum + val_sum = 82797 + 30301 = 113098

最终答案:113098

deepseek

要计算 train_dataval_data 中所有值的总和,我们可以分别计算每个字典的总和,然后将它们相加。

计算 train_data 的总和:

train_sum = sum(train_data.values())
train_sum = 10538 + 17539 + 6447 + 5025 + 7847 + 3607 + 1153 + 3002 + 464 + 770 + 37 + 13932 + 8490 + 2097 + 740
train_sum = 78788

计算 val_data 的总和:

val_sum = sum(val_data.values())
val_sum = 2915 + 6539 + 3394 + 1959 + 3445 + 1785 + 404 + 399 + 214 + 223 + 40 + 4967 + 3228 + 236 + 553
val_sum = 30101

总和:

total_sum = train_sum + val_sum
total_sum = 78788 + 30101
total_sum = 108889

最终结果:
train_dataval_data 中所有值的总和是 108,889

kimi

要找到所有值的总和,我们需要将两个字典中的所有值相加。让我们从`train_data`开始,然后加上`val_data`中的值。

首先,我们计算`train_data`中值的总和:
\[
10538 + 17539 + 6447 + 5025 + 7847 + 3607 + 1153 + 3002 + 464 + 770 + 37 + 13932 + 8490 + 2097 + 740
\]

逐步相加:
\[
10538 + 17539 = 28077
\]
\[
28077 + 6447 = 34524
\]
\[
34524 + 5025 = 39549
\]
\[
39549 + 7847 = 47396
\]
\[
47396 + 3607 = 51003
\]
\[
51003 + 1153 = 52156
\]
\[
52156 + 3002 = 55158
\]
\[
55158 + 464 = 55622
\]
\[
55622 + 770 = 56392
\]
\[
56392 + 37 = 56429
\]
\[
56429 + 13932 = 70361
\]
\[
70361 + 8490 = 78851
\]
\[
78851 + 2097 = 80948
\]
\[
80948 + 740 = 81688
\]

因此,`train_data`中值的总和是81688。

接下来,我们计算`val_data`中值的总和:
\[
2915 + 6539 + 3394 + 1959 + 3445 + 1785 + 404 + 399 + 214 + 223 + 40 + 4967 + 3228 + 236 + 553
\]

逐步相加:
\[
2915 + 6539 = 9454
\]
\[
9454 + 3394 = 12848
\]
\[
12848 + 1959 = 14807
\]
\[
14807 + 3445 = 18252
\]
\[
18252 + 1785 = 20037
\]
\[
20037 + 404 = 20441
\]
\[
20441 + 399 = 20840
\]
\[
20840 + 214 = 21054
\]
\[
21054 + 223 = 21277
\]
\[
21277 + 40 = 21317
\]
\[
21317 + 4967 = 26284
\]
\[
26284 + 3228 = 29512
\]
\[
29512 + 236 = 29748
\]
\[
29748 + 553 = 30301
\]

因此,`val_data`中值的总和是30301。

最后,我们将两个总和相加:
\[
81688 + 30301 = 111989
\]

因此,所有值的总和是\boxed{111989}

通义

要计算 train_dataval_data 中所有值的总和,可以分别对两个字典中的值求和,然后将结果相加。

  1. 计算 train_data 的总和:
train_sum = sum(train_data.values())

train_data 中的所有值相加:

10538 + 17539 + 6447 + 5025 + 7847 + 3607 + 1153 + 3002 + 464 + 770 + 37 + 13932 + 8490 + 2097 + 740 = 87691

所以,train_sum = 87691


  1. 计算 val_data 的总和:
val_sum = sum(val_data.values())

val_data 中的所有值相加:

2915 + 6539 + 3394 + 1959 + 3445 + 1785 + 404 + 399 + 214 + 223 + 40 + 4967 + 3228 + 236 + 553 = 32280

所以,val_sum = 32280


  1. 总和:
    train_sumval_sum 相加:
total_sum = train_sum + val_sum = 87691 + 32280 = 119971

最终答案:
119971 \boxed{119971} 119971

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSPhD-winston-杨帆

给我饭钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值